Contour Clustering

Manual

Constantijn Kaland
Institute of Linguistics - Phonetics
University of Cologne

This manual provides introductory usage instructions for the R shiny application
Contour Clustering (Kaland, 2021), which offers a graphical user interface to per-
form cluster analysis on fO and other acoustic cues. The scripts, a tutorial, and other
supplementary materials can be downloaded on the website:

https://constantijnkaland.github.io/contourclustering/

CC

March 2025

https://constantijnkaland.github.io/contourclustering/

Contents

1 Tips to get started 3
2 Requirements 4
2.1 Unit of analysis 4
2.2 Dataset 4
2.3 Segmentation 5

3 Workflow 7
3.1 Runapp 7

4 Data 9
4.1 Loadfile 9
4.2 Read folder 10
4.3 Acoustics 11
4.3.1 FOfloor and ceiling 11

432 FOfit. 11

4.3.3 FO smoothing bandwidth 11

434 FOtime-step. 12

4.3.5 Number of measurement points 12

4.3.6 Sampling 13

4.3.7 Intensity 13

4.3.8 Durationo 14

4.4 Speakers 15
4.5 Clean. e 15
4.6 Representations 16
4.6.1 FO 16

4.6.2 Intensity 18

4.6.3 Durationo 18

Clustering 19

5.1 Variables for clustering oL 19
5.2 Distance metrico 20
5.3 Clustering method 21

5.3.1 Hierarchical agglomerative clustering - HAC 21

5.3.2 Partitioning around medoids - PAM 24
5.4 Number of clusters 25
5.5 Plotsettings 25
5.6 Cluster outputs 26

5.6.1 Dendrogram (HAConly) 26

5.6.2 Plot 26

5.6.3 Table. 27
5.7 Subsetting 29
5.8 Ewvaluation 30
Data conventions 33
6.1 dfu. 33
6.2 dfg. 33
6.3 dfll 33

6.3.1 Singleton vs. time-series 34

6.3.2 Decimals 35
6.4 dfe. . . . 35
Settings 36
7.1 Number of rows todisplay 36
7.2 File upload limit 36
7.3 Saving 36
7.4 Keeping objects 37
7.5 Garbage collection 37
7.6 Logfile 37
References 38
Index 42

1. Tips to get started

download the latest version of the app

use the index in this manual to jump to specific topics

update R/-Studio and required packages (see versions in code)

- take a look at the workflow chart on page 8

- practice with a training dataset from the website

- hover your mouse on any location in the app to get tips

- don’t forget to save your work in the app (‘Save’ or ‘Save this’ buttons)

- get inspired by previous work on various languages

https://constantijnkaland.github.io/contourclustering/#download
https://constantijnkaland.github.io/contourclustering/#download
https://constantijnkaland.github.io/contourclustering/#documentation
https://constantijnkaland.github.io/contourclustering/#references
https://constantijnkaland.github.io/contourclustering/#languages

2. Requirements

First, the three minimal requirements are discussed, which need to be fulfilled before
contour clustering can be applied. A basic understanding of scripting R (R Core
Team, 2022; R Studio Team, 2023) is helpful, but not required.

2.1 Unit of analysis

The researcher is required to decide which linguistic unit of analysis needs to be
investigated. The unit of analysis depends on which level of prosody is subject
to the interest of the researcher (e.g., word or phrase level). In principle, contour
clustering can be applied to any interval extracted from speech. For example, for
the investigation of lexical tone the unit of analysis would typically be the syllable
or word, whereas for the investigation of phrase level intonation the unit of analysis
would typically be the (intermediate) phrase. Note that some understanding of
the prosodic relevance of these units in the language under investigation needs to
be present. It is beyond the scope of this manual to provide fieldwork paradigms
that help to identify the units that are relevant in the prosody of certain language
(see e.g., Jun and Fletcher, 2014 for guidelines). Nespor and Vogel (2007) provide
a phonological hierarchy that could be maintained. The decision for a unit has a
couple of implications for later steps in the procedure. For this reason, it is advisable
to keep the unit of analysis the same throughout one analysis, i.e. not comparing
syllable-level f0 movements with those found in phrases (Section 4.2).

2.2 Dataset

The researcher should have access to a collection of audio-recordings and corre-
sponding annotations in Praat textgrids (Section 2.3 for annotation requirements),
consisting of sufficient observations. Praat textgrids can be exported from several

programs, such as ELAN (Max Planck Institute for Psycholinguistics, 2022, see
https://www.mpi.nl/corpus/html/elan/ch01s04.html and STx (Noll et al., 2019, see
https://projects.ari.oeaw.ac.at /stx.

What a sufficient amount of observations is, depends on the quality of the record-
ings and a number of later steps in the analysis. For example, when only four clusters
need to be identified, the analysis might reach a representative outcome with less
observations than when eight clusters need to be identified (see Section 5.4 for in-
structions on the number of clusters). It is possible that some data needs to be
discarded due to f0 measurement errors. It is therefore recommended to collect more
units than strictly speaking needed. In the phrase contour example (Kaland, 2021,
Section 3), 321 contours were used for initial analysis, on the basis of which at least
one clearly defined follow-up hypothesis could be formulated concerning potential
functional differences between in the contours. For the tonal analysis (Kaland, 2021,
Section 4) the contours of 213 syllables were analysed and again provided insightful
results for further testing. Another indication of whether the dataset is large enough
for cluster analysis can be obtained from the mean standard errors within each clus-
ter (provided in the output table, Section 5.6). Large standard errors indicate large
variance within the cluster, which could be the result of (too) few observations. It is
important to note that in general more observations will often lead to more represen-
tative results and that the ideal size of the dataset largely depends on decisions taken
during the analysis (see Section 5.4 and 5.7). Unbalanced datasets are not necessar-
ily problematic for the cluster analysis. For example, a dataset with 5% questions
and 95% statements could still be accurately clustered when their differences in f0
contours are clear enough.

2.3 Segmentation

Once the unit of analysis and the dataset are decided upon, the researcher needs to
segment all units of analysis on an interval tier in a Praat textgrid (Boersma and
Weenink, 2022). This means that the left and right boundary of each unit (an inter-
val) need to be indicated. It is highly recommended to label the units using glosses
in the language under investigation or another common language (e.g., English), or
ideally both. For purely exploratory purposes, contour clustering does not require
text labels for the intervals on the textgrid tier. The more information is available in
the textgrid for each unit, the more solid the interpretation of the results can be after
analysis (see ‘contingency table’ in Section 5.6.3). This information can include other
linguistic aspects that are not necessary included in the initial intonation analysis

https://www.mpi.nl/corpus/html/elan/ch01s04.html#Sec_Exporting_a_Praat_TextGrid_file
https://projects.ari.oeaw.ac.at/stx/docs/wiki/index.php/User_Guide/Toolbox/Export_PRAAT_TextGrid

(e.g. segments, syllables, words, phrases, discourse units, grammatical annotations).
See https://osf.io/crdvn/ for Praat scripts that handle and count (overlapping) in-
tervals on multiple tiers.

https://osf.io/cr4vn/

3. Workflow

Figure 3.1 provides a schematic overview of the contour clustering workflow when
using the application. The workflow is divided into a ‘data’ stage (Chapter 4) and
‘clustering’ stage (Chapter 5). The names of the respective tab panels in the appli-
cation are used as section titles in the following, in order to provide a transparent
reference to the location in the workflow as well as the in the application.

The data stage covers all operations that are required to prepare a dataset for
clustering. Once that stage is completed, the clustering stage will be initiated and
covers all operations related to the performance and processing of cluster analysis
and its results.

In what follows, each step in the workflow is explained in a separate section, in
the order of the workflow.

3.1 Run app

In order to run the application, R (R Core Team, 2022) and R Studio (R Studio
Team, 2023) need to be installed. The application will install the latest versions of
each required package automatically when the code is run. If any packages needed a
(new) installation, the R session will automatically restart and the application need
to be started again. If no ‘Run app’ button is displayed, the shiny package (Chang
et al., 2012) needs to be installed first (run: install.packages("shiny")). An
overview of the required packages is provided in the application. The application
is best displayed in a maximized window. Any smaller app window might cause
layout issues or controls being (partially) invisible. It is also possible to run the
application in a browser window by choosing ‘Run external’ in R Studio or set the
launch.browser = T option in the code (commented out in the code by default).

Figure 3.1: Schematic overview of the Contour Clustering workflow, divided in a
‘Data’ and a ‘Clustering’ stage referring to the respective main tabpanels in the
application. For each step, the names of sub-tabpanels are given between brackets.
Square brackets indicate optional steps in the workflow.

RUN APP

v
[Save output]

4. Data

Once the app has started, a choice needs to be made about the source of the to
be clustered data (requirements see Section 2.2): either upload an existing dataset
(Load file - Section 4.1) or read audio files and textgrids from a folder (Read folder
- Section 4.2).

4.1 Load file

Use this option if acoustic measures are already taken. Files that can be uploaded
may be obtained from the application in a previous session, from running the ‘time-
series_f0.praat’ script in Praat (Boersma and Weenink, 2022), or from (manually)
compiled data by another source and/or the researcher. Note that non-locally stored
files (server/cloud) may not be readable.

Uploading a file requires a .csv file in ‘long’ format. This means that each row in
the data represents a single measurement point (i.e., a single f0 value in Hertz). For
each row it is furthermore required to have values in at least the following columns:

Table 4.1: Required columns when uploading a datafile.

Column name Class Content

filename character Refers to the filename (.wav/.mp3) from which the measurements were taken.
start numeric Start time of the interval (seconds)

end numeric End time of the interval (seconds)

speaker character ~ Speaker IDs (can be identical to or extracted from another character column)
interval_label character Text referring to the interval (usually taken from textgrid intervals)
stepnumber integer The sequence number of the measurement point in the time-series

fo numeric Fundamental frequency measured in Hertz, ERB or semitone (app can convert)

Additional columns can be taken from the uploaded datafile. The application
caters for columns that were used in older versions (e.g., ‘jumpkilleffect’, ‘steptime’),

as well as ones that represent other acoustic cues (‘intensity’ or ‘duration’) or addi-
tional columns that require manual specification of whether they contain character
values, numeric values, or are referring to an (acoustic) variable that should be taken
into account for clustering (‘cc’, see Section 6).

It is furthermore possible to subset the uploaded data for specific filenames and /or
interval labels.

4.2 Read folder

The ‘Read folder’ tab panel should be selected if no acoustic measurement were
taken yet. The path to a folder that contains both audio files and textgrids needs
to be given, and the extension of the audio files (.wav or .mp3) specified. Note that
non-locally stored files (server/cloud) may not be readable.

Reading the folder means that the application scans for audio files and textgrids
that have identical names (only differ in extension, e.g., ‘Recording_-1.wav’ and
‘Recording_1.TextGrid’). The resulting list of names is returned and individual files
can be (de)selected. The audio files are processed faster when they have only one
channel (mono). The textgrid files should have the file encoding UTF-8 or ASCII
and should not be saved as ‘short text file’ in Praat. Textgrids not confirming to
those conditions cannot be read by the readtextgrid package (Mahr, 2020) and
cause the application to halt and produce a warning message showing which file was
processed when the error occurred. Note that the application does not automatically
convert the file encoding as to avoid loosing the use of specific (special) characters
in the textgrids. It is left to the user to provide (a converted copy of) the textgrids
in a readable encoding.

All interval tiers found in the textgrids can be selected for further processing.
In case multiple tiers are selected, they should be of comparable units of analysis.
That is, it is not advised to feed a tier with segmented syllables and a tier with
segmented phrases into the same analysis. With multiple tiers selected, the name of
each tier is prepended to the text in the ‘interval_label’ column. The data read from
the textgrids (readtextgrid: :read_textgrid(), Mahr, 2020) can be viewed in the
‘Data (TextGrids)’ tab.

It is furthermore possible to select specific interval labels from the selected tier(s).

10

4.3 Acoustics

The ‘Acoustics’ tab provides an environment to take acoustic measurements of f0,
intensity and duration - only available after ‘Read folder’ (Figure 3.1). Each cue can
be (de)selected depending whether it should become available for cluster analysis.
Their respective settings are discussed in the following.

4.3.1 FO floor and ceiling

The {0 tracking method is Modified Harmonic Sieve (Scheffers, 1983 as implemented
in wrassp: :mhsFO(), Winkelmann et al., 2023). This method requires an f0 window
for the expected values, as defined by the fO floor and fO ceiling. These can be
adjusted depending on the voice under analysis or the type of phonation (Gordon

and Ladefoged, 2001).

4.3.2 FO fit

The Modified Harmonic Sieve method aims at detecting f0 in noisy environments by
a maximum likelihood estimation from its harmonics (Goldstein, 1973). The {0 fit
threshold specifies the minimum probability for an f0 measurement to fit. Increasing
this value makes the detection algorithm more strict, rejecting more fO candidates and
accepting only the better fitting ones (more accuracy, less candidates). Decreasing
this value will accept more candidates at the expense of tracking accuracy.

4.3.3 FO0 smoothing bandwidth

By default, the f0 measures are interpolated and extrapolated, which means that all
missing fO points are filled in by linear interpolation and missing fO points at the
edges are filled in by extrapolation using a constant based on the first/last available
fO point. This is done to obtain uninterrupted fO contours, which is at least partially
motivated by perception research (Mixdorff and Niebuhr, 2013).

The 0 contour is then smoothed using kernel density estimation (KDE). The ap-
plied method is described in Silverman (1986). The smoothing bandwidth positively
correlates with the degree of smoothing (i.e. larger bandwidth = more smoothing).
The bandwidth value is the input of the stats: :ksmooth() function. The smooth-
ing allow to reduce the influence of local (erroneous or irrelevant) f0 perturbations
on the overall contour. It is recommended to try out multiple settings and inspect
the results using the sampling method (Section 4.3.6).

11

4.3.4 FO time-step

The time-step setting refers to the frame duration used to calculate {0 (wrassp: :mhsF0 ()
‘windowShift = ’). The standard setting used in Praat depends on the pitch mini-
mum (or pitch floor; see Praat Manual “Sound: To Pitch...”; Boersma and Weenink,
2022) and defaults to 10 ms with a minimum of 75 Hz. Manually specifying the
time-step provides a way to configure the resolution of the f0 measures. This might
be needed in addition to number of measures and smoothing.

The time-step setting determines how many measurement points are initially
taken for a contour, which at the stage of fO tracking is different from the number
of measures setting (Section 4.3.5). For example, for a 200 ms interval one obtains
20 f0 measures with a 10 ms window and one obtains 40 f0 measures with a 5
ms window. This number of measurement points will be converted to number of
points the user sets to estimate each contour (Section 4.3.5), i.e. after inter-, extra-
polation and smoothing. If the final number of measurement points is more than the
number of points obtained using the time-step setting, the likelihood of inaccurate
f0 approximation increases. That is, a contour obtained from 20 measures (e.g.
200 ms interval, 10 ms time-step) will not become more accurate when setting the
number of measurement points to 40. Approaching this issue the other way around
is recommended, i.e., setting the time-step such that more fO points are taken than
the representation chosen in the app. Thus, the time-step setting offers a way to
safeguard that the tracking resolution equals or exceeds the contour resolution. Some
additional lines of text, dependent on the data and the settings, are provided in the
application to guide this process.

4.3.5 Number of measurement points

The researcher needs to decide how many f0 measurements are needed to represent
the smoothed contour as time-series. It is important to realise that the smoothed
contour is already the product of interpolation, extrapolation and smoothing, poten-
tially based on just a few tracked fO points. Representing the smoothed contour by
more points than actually tracked, could be misleading as this potentially generates
the illusion of accurate representation (e.g. representing a smoothed f0 contour by
20 points when it is based on 5 tracked f0 points, see Section 4.3.4).

It is important that eventual turning points in the contour are well represented
by both the smoothing and the number of measurement points. This depends largely
on the unit of analysis and the desired accuracy of the measures. Taking too few
measures could lead to missing essential f0 movements within the contour, whereas
too many measures could give too much importance to insignificantly small f0 mea-

12

sures, although the latter should be largely taken care of by the smoothing process.
Note that the smoothing process (Section 4.3.3) could also be responsible for the
over-estimation of small f0 movements. It is recommended to change the number
of measurement points only in accordance with the smoothing resolution, whilst
considering the output of the cluster analysis (Section 5.6).

It is important to note that inaccurate f0 measurements are likely to occur in
each dataset. The cluster analysis provides an automatic detection of erroneous and
outlying contours, which can then be removed from the data (Section 5.7). Changing
the number of measures to account for a small number of erroneous contours is not
recommended, as this affects also the correct measures. Only if the same type of f0
errors occur repeatedly, changing the number of measures could be considered.

4.3.6 Sampling

Before taking f0 measures of an entire dataset, there is an option to sample a specified
number of randomly chosen intervals to inspect the accuracy of the acoustic settings.
In particular the fO fit, number of measurement points and smoothing bandwidth
should be changed to improve the quality of the measurements. It is likely that the
standard settings produce inaccurately tracked fO contours due to, e.g., octave jumps.
After each sampling, plots are generated showing the tracked fO points using the
tracking method (black solid line) and the interpolated, extrapolated and smoothedf0
smoothing contour (red dashed line). Sampling provides therefore an essential quality
control before taking acoustic measures for all observations in the data. It is possible
that f0 cannot be tracked (accurately) in all intervals; this will be shown in the
sampling plots and NAs will written to the output file. In addition to the plot, the
audio taken from the sample can be played. This is done by cutting the sampled
interval(s) from the original file and storing them temporarily in the ‘www’ folder in
the folder from which the application is run. The ‘www’ folder and its contents will
be automatically removed when sampling has finished.

Each time ‘Visualize sample’ is clicked, the current fO settings are used to generate
the plots based on the sample that was already taken. Only when ‘Take sample’ is
clicked, a new sample is taken. Changing the size of the sample is only effectuated
when ‘Take sample’ is clicked.

4.3.7 Intensity

Intensity (short-term Root Mean Square amplitude in dB) can be measured as addi-
tional (or sole) acoustic cue. The intensity measures are taken using the wrassp: : rmsana ()

13

function (Winkelmann et al., 2023). The number of measurement points is identical
for intensity and f0 time-series.

4.3.8 Duration

Duration measurements can be added for clustering and will be taken as singleton
ones (not time-series) and provide a way to compensate for the temporal information
that is lost when representing each time-series with the same number of measurement
points (time-warping). The duration is calculated by subtracting the interval end
time from the interval start time. This is done once per interval (hence ‘singleton’,
see Section 6.3.1) and written to the first row in the data that represents this interval
(i.e., for stepnumber 1).

14

4.4 Speakers

When taking acoustic measurements in the application or when the uploaded datafile
does not have a column with speaker IDs, the tab ‘Speakers’ offers a way to create a
speaker column. This can be a 1:1 copy of another character column that is already
present in the data or an extracted string from the any character column in the data.
The latter option is useful when, for example, the ‘interval _label’ column consists of
multiple sources of information, e.g., task number, speaker ID and condition in the
format 008_pp3_test. The application offers a way to split the string according
to any punctuation mark found in that column (regex class: [:punct:]). In the
example, an underscore would be the separator to extract ‘pp3’ as speaker ID.
The extraction is done in three stages, from left to right in the ‘Speakers’ tab:

1) select the column containing the speaker IDs
2) select the separator character
3) select the column with the speaker IDs after separation.

The selection made in step 3 can be taken as the new column ‘speaker’. Note
that the number of unique character strings found in the (new) ‘Speaker’ column
equals the number of speakers.

4.5 Clean

The cleaning tab is presented once the dataset has all required columns and at
least one column with acoustic measures for clustering (commonly f0 values). Upon
display, the ‘Clean’ tab shows a summary of the number of filenames, speakers,
measurement points and intervals (contours), and any problems currently detected
in the data. Table 4.2 lists the most common problems that are checked.

Table 4.2: Problems checked by the cleaning process

Problem Description

missing filenames NA entries in ‘filename’ column

missing speaker IDs ~ NA entries in ‘speaker’ column

empty interval labels accidental spaces ¢’ in ‘interval label’ column

missing f0 NA entries in ‘f0’ column
negative f0 negative value in ‘f0’ column (e.g., result of previous standardization)
rate of f0 change checks adjacent f0 values against rates in Xu and Sun (2002, Table X)

15

Any detected problems will be listed in the summary and can be solved by clicking
‘Clean and re-check’, after which a new summary is given. It is important to observe
how many observations get removed in the cleaning process, to see whether there are
any structural problems in the data.

Although it is possible to ignore the detected problems and continue without
cleaning, this option is not recommended and only advised if the application has
detected problems that can be ignored. Ignoring detected problems may lead to
application crashes.

4.6 Representations

The ‘Representation’ tab offers a final step of bringing the data in the desired shape
for clustering. Arriving at this tab means that all source data is present and cleaned.
It is therefore possible to continue directly to clustering. However, it might be desired
to apply conversions or (speaker) corrections to the (raw) acoustic measurements in
order to obtain additional and more representative values for the acoustic cues. This
can be done for f0, intensity and duration separately, when present in the data. The
options for the respective cues are discussed below. Clicking ‘Add .. representation’
adds the chosen representation as new values in an additional column to the dataset
(see Section 6).

4.6.1 FO

All operations to obtain fO representations can be combined, i.e. it is possible to do
a functional principal component analysis on the acceleration (d2) values of speaker-
standardized semitone values.

F0 scale can be set to Hertz, ERB or semitone. ERB conversion according to the
formula in Greenwood, 1961, p.1352, Eq. 2.

F0O values can be speaker corrected by means of standardization (z-scoring) or
octave-median rescaling (De Looze and Hirst, 2014).

Derivatives (d1 - velocity, d2 - acceleration, d3 - jerk) can be taken from the
(converted) (speaker-corrected) f0 values.

Functional principal component analysis (fPCA, see Gubian, Torreira, and Boves,
2015) can be run on the (converted) (speaker-corrected) (derived) fO values. The
analysis is automatically run as soon as the number of principal components (PCs)
is not zero. The output is a graph showing the harmonic values for each PC and
settings are given for smoothing (A - lambda) and which PC should be selected for
clustering. It is possible to run fPCA with four components whilst adding only PC1

16

and PC2 to the data for clustering. The values of each PC appear in a new column
as singleton measure, i.e., one value per interval at measurement point 1 (Section
6.3.1.

Standardizing the fO subtracts the mean fO a speaker from each f0 measure of
that speaker and divides the outcome by the f0 standard deviation of that speaker.
After standardizing, the mean fO centers around zero and the standard deviation
is one. The minimum and maximum f0 values still reflect the original distribution
and outlying fO values are therefore not accounted for. Note that if outliers are
the result of f0 measurement errors, they can still effectively be handled by means
of subsetting (Section 5.7). Standardizing is a recommended method to preserve
functional fO differences such as tone contrasts when comparing different speakers
(e.g. Rose, 1987).

Another method to scale the f0 range is based on the octave scale, taking into
account the speaker’s median f0. This makes the f0 measures more robust to out-
liers and is proposed as more representative method for speech melody compared to
reference values based on the mean and expressed in semitones (De Looze and Hirst,
2014). Octave-median scaling appeared particularly accurate for estimating acoustic
emphasis as a result of focus, topic change or turn-taking.

fPCA reduces the dimensionality of the f0 contours to a chosen number of prin-
cipal components. The components represent deformation functions relative to the
overall mean f0 contour and can be visualized using curves (contours). Each prin-
cipal component comes with scores for each contour, which allow for a reconstruc-
tion of the original fO contour from the mean fO contour + the principal compo-
nent curves + scores. The application offers a basic fPCA functionality: setting
the number of components, a plot of the component curves, and an overview of
the proportion of the variance explained by each component. The user can select
which component(s) need to be included into the cluster analysis. fPCA is per-
formed using the fda package (Ramsay, 2003) following the procedure outlined in
https://github.com/caojiguo/FDAcourse2019. Additional materials can be found on
https://github.com/uasolo/FPCA-phonetics-workshop.

The application of cluster analysis on the fPCA scores offers a promising way of
handling the fO variation, possibly less affected by noise in the data. Note that the
fPCA is run after any of the selected cleaning and /or speaker correction methods are
applied. The user needs to select the number of principal components (default: 4) and
A (default: 1), a smoothing factor used in the function £dPar () to define a functional
parameter object. Higher lambda numbers indicate more smoothing, which could
lead to larger deviations from the original f0 contours in the reconstructed fPCA
curves.

17

https://github.com/caojiguo/FDAcourse2019
https://github.com/uasolo/FPCA-phonetics-workshop

4.6.2 Intensity

Intensity values can be standardized (z-scored) per filename or per speaker. File-
name standardization is useful when recordings (files) had different microphone lev-
els. Speaker standardization standardizes over the speaker IDs and is useful when
speakers’ voices differ in loudness.

4.6.3 Duration

Duration values can be standardized per speaker to account for individual differences
in speech tempo (in the unit of analysis).

18

5. Clustering

The clustering stage starts when all required data is present, has been cleaned and
the desired representations for the acoustic cue(s) have been added to the data. The
‘Clustering’ tab provides cluster settings (side panel) and cluster outputs such as
plots, tables and evaluations (main panel).

5.1 Variables for clustering

From the acoustic representations present in the data, any number can be chosen as
variable(s) to apply cluster analysis to. When more than one variable is chosen, the
cluster analysis will be multivariate clustering. This is handled by the application in
the following way. First, a distance matrix is computed for each variable (with the
chosen distance metric, see Section 5.2). The distance values in each distance matrix
are then scaled such that they lie between zero and one. The scaled distances are
summed into a single distance matrix, which is then taken as the input for cluster
analysis.

Multivariate time-series clustering can in theory also be done by concatenating
the time-series. Note, however, that this does not allow that combinations of time-
series values (e.g., f0) and singleton (e.g., duration) values are given equal weight.
In addition, concatenation is not suitable when using, e.g., dynamic time warping
as distance metric, because all measures of all variables are analysed as a single
vector per observation. The application thus uses the scaling-summing approach
for multivariate clustering, giving equal weight to the distances of the respective
variables.

See Section 5.2 and Section 6.3.1 for restrictions on the use of distance metrics
when choosing the variable(s) for clustering.

19

5.2 Distance metric

The available distance metrics are Euclidean (L2 Norm / RMSE), mean absolute
scaled error (MASE), dynamic time warping, Pearson correlation and autocorrelation
(see Table 5.1).

Table 5.1: Overview of available distance metrics and the respective R package used
for computation. Only metrics marked with * are suitable for singleton measures.

Distance metric R-package pros cons

*Euclidean (L2 Norm = RMSE) stats tested on fO contours insensitive to misalignment
mean absolute scaled error (MASE) Metrics outperforms RMSD not widely used for fO
*dynamic time warping proxy sensitive to misalignment overcorrection

pearson correlation TSdist overall similarity contour cannot be flat
autocorrelation TSdist high potential for O computationally costly

Euclidean distance (L2 Norm) or root mean squared error (RMSE) is widely used
to compute the distance between two vectors due to its low computational cost and
frequent availability. It is however, insensitive to misalignments in time as it is a
lock-step measure and does not handle outliers well (Esling and Agon, 2012). This
means that clustering outputs using Euclidean distance as a distance metric become
more reliable when the data is cleaned and/or converted beforehand. This metric
has been tested on fO contours (Hermes, 1998) reflecting intonation perception to
some extent.

Mean absolute squared error (MASE) is a time-series metric used to calculate the
accuracy of weather forecasts (Hyndman and Koehler, 2006). This metric is scale-
invariant and penalizes negative and positive distances in equal ways, outperforming
related metrics such as root mean squared deviation (RMSD). Although the (f0)
contour comparison is different from quantifying prediction accuracy - and currently
needs further testing, the method is a potential alternative and applicable to time-
series (not suitable for singleton measures). For each distance calculation between
two contours, one contour is taken as if it were the actual weather observation and
the other contour is taken as the prediction. The output MASE value can be taken
as a distance metric as it shared the assumption that at zero, there is no distance
between the contours (no errors between observation and prediction). MASE values
greater than one indicate that a naive forecast (assuming no change) would preform
better than the given forecast values. It is likely that fO contour distances expressed
in MASE end up being higher than one, indicating that one contour could not be

20

predicted from the other (i.e. are highly dissimilar). In this way, the MASE threshold
of 1 could be used as cut-off point to potentially improve cluster accuracy.

Dynamic time-warping provides a way to account for misalignments between two
contours that are otherwise similar in shape. These misalignments could have been
the results of the time-warping that is done by taking a fixed number of measurement
points to represent the fO contour. Dynamic time warping as a distance metric should
be avoided if the length of the unit of analysis has already been controlled for. That
is, there is a trade-off to the usefulness of dynamic time-warping if all intervals
have (almost) the same length. In this case, time-warping might analyse misaligned
portions of the fO contours as been similar although they are not. The importance
of time-warping thus depends on the research question and data at hand.

Pearson correlation distance is an effective lock-step measure to compute overall
similarity between contours that are represented by time-series data (not suitable
for singleton measures). It is important that Pearson correlation coefficients are
computed in such a way that they range from -1 to 1 (maximum negative and max-
imum positive correlation respectively). If direction of the f0 contour is not taken
into account (as by taking the absolute correlation coefficient), the distance metrics
will regard simultaneously diverging contours as being similar. The computation as
implemented in the application takes direction into account and is therefore suitable
for application on acoustic variables.

Autocorrelation - being a feature-based measure - is effective to deal with fO con-
tours as it takes into account that adjacent measures in a time-series are correlated
(not suitable for singleton measures). The autocorrelation distance is computation-
ally costly. Note that for the computation of correlation coefficients, time-series
values are expected to have a standard deviation that is higher than zero. This
means that flat contours will obstruct the computation of correlation coefficients.

5.3 Clustering method

Two common clustering methods are available in the application: hierarchical ag-
glomerative clustering (HAC) and partitioning around medoids (PAM). HAC and
PAM differ fundamentally in their mathematical approach (further reading: Kauf-
man and Rousseeuw, 1990; Reynolds et al., 2006; Scitovski et al., 2021).

5.3.1 Hierarchical agglomerative clustering - HAC

For HAC there are multiple ways in which the clusters can be formed. Note that
HAC in the current approach is bottom up, thus starting with each observation in

21

a separate cluster. Clusters are formed by merging existing clusters until there are
only two clusters left. Theoretically, one extra step applies in that the final two
clusters are merged such that all observations are in a single cluster. However, this
final step is tantamount to no clustering and is not informative given that clustering
aims at finding groups in a dataset. The dendrogram provides useful directions for
the degree and type of subsetting needed, as further discussed in Section 5.6.1 and
5.7.

Which clusters get merged is determined by the linkage criterion. The linkage
criterion specifies how distances (dissimilarities) between clusters are computed. An
overview of the linkage criteria available in the application is given in Table 5.2.
The default one recommended here is complete linkage, given the idea that maxi-
mal acoustic contrasts often underlie linguistically meaningful differences (e.g., the
composition of vowel inventories, Lindblom, 1986). There is no a priori objection to
select a different linkage criterion, depending on the type of f0 variation in the data.

22

Table 5.2: Overview of linkage criteria

Linkage criterion Cluster dissimilarity definition

Complete Computes all pairwise dissimilarities between the ob-
servation(s) in the clusters and takes the maximal
dissimilarity. Clusters with the smallest maximal
dissimilarity get merged, leading to maximal inter-
cluster dissimilarity.

Single Computes all pairwise dissimilarities between the ob-
servation(s) in the clusters and takes the minimal dis-
similarity. Clusters with the smallest minimal dissim-
ilarity get merged, leading to minimal inter-cluster
dissimilarity:.

Average (UPGMA) Computes all pairwise dissimilarities between the ob-
servation(s) in the clusters and takes the mean dis-
similarity. Clusters with the smallest mean dissimi-
larity get merged.

Ward Computes the increase in sum of squares for all pos-
sible pairwise merges of clusters. Clusters with the
smallest increase get merged. This method keeps
the total within-cluster variance minimal. Ward.D
and Ward.D2 differ in that the cluster differences are
squared in the latter and therefore emphasized, lead-
ing to easier cluster differentiation.

McQuitty (WPGMA) Similar method to average linkage, without consider-
ing the number of observations in a cluster and with
taking into account the similarity between the most
recently merged clusters.

Centroid (UPGMC)* Computes the centroids (central point of all observa-
tions, i.e. a vector of means) of the clusters. Clusters
with the centroids closest to each other get merged.

Median (WPGMC)* Similar to centroid linkage, with taking into account
the similarity between the most recently merged clus-
ters.

* These linkage criteria have the risk of leading to inversion. For most link-

23

age criteria, merging happens on the basis of iteratively larger dissimilarities. With
centroid-based linkage, centroid distances could get smaller in subsequent merging
iterations. In such case, it is no longer possible to assume that with an increasing
number of clusters variance among the observations in a cluster increases, whereas
variance among the clusters decreases (see within and between cluster variance dis-
cussed in Section 5.8).

5.3.2 Partitioning around medoids - PAM

PAM (Kaufmann and Rousseeuw, 1987) makes use of medoids, which are actual
observations that are taken as cluster ‘centers’ (BUILD stage). This is initially
done by selecting k observations that have the smallest sum of distances to all other
observations (with k& being the number of clusters to be identified). Each (non-
medoid) observation is then associated to the (according to the distance metric)
nearest medoid. Then, PAM attempts to improve the clustering quality by reassign-
ing medoids (SWAP stage). For each reassignment it is checked whether the average
dissimilarity between the medoid and their associates decreases. If so, the reassign-
ment is accepted. When the medoids do not change anymore, the partitioning of the
data has arrived at a stable outcome, which is taken as the final cluster assignment.

To reduce computation cost, several PAM improvements have been proposed.
The optimizers are therefore recommended for large datasets to optimize the pro-
cessing speed. None of the optimizers changes the cluster assignment (unlike the
linkage criterion in HAC). Table 5.3 lists the available optimizers in the application.

Table 5.3: Overview of PAM optimizers available in cluster: :pam() (Maechler et
al., 1999)

Optimizer Description

K-medoids Original PAM proposed in Kaufmann and Rousseeuw (1987)
PAM1
PAM?2
FastPAM1
FastPAM2 Optimizations proposed in Schubert and Rousseeuw (2019)
FastPAM3

FasterPAM Optimization proposed in Schubert and Rousseeuw (2021)

Optimizations proposed in Reynolds et al. (2006)

24

5.4 Number of clusters

Finding the ideal number of clusters is key in performing cluster analysis. Before
deciding on the number of clusters, it is recommended for the researcher to have a
theoretically motivated estimation of this number, i.e. before obtaining any result
from the analysis. For example, if the aim is to find a basic set of different lexical
tone contours from words, around four to six clusters could be sufficient to accurately
capture the contrasts. However, if the aim is to find a broad set of all lexical tone
contrasts in combination with phrase intonation patterns, e.g. 15 clusters could be
the minimum number needed. One way of determining the number of clusters is
to run several rounds of analysis, each time with an increasing number of clusters
(Kaland, 2021, Section 2-4). This is particularly useful in an exploratory context,
where only a rough estimation of the number of clusters can be made. It is also
recommended to run the cluster analysis with a number of clusters that exceeds the
hypothesized number. In this way, the researcher can reduce the risk of missing
relevant contrast that were unexpected. The dendrogram (HAC only) provides some
initial guidance in finding the ideal number of clusters. Obtaining the dendrogram
for a given dataset does not require any prior decisions on the number of clusters.
That is, the dendrogram remains as is when changing the number of clusters.

An indication of the accuracy of the number of clusters can also be derived from
plotting the mean contours per cluster, as further explained below. Apart from the
general guidelines outlined here, there are statistical methods to obtain an estimation
of the ideal number of clusters in an analysis, which are left for the user to explore
(e.g. Charrad et al., 2014).

5.5 Plot settings

The ‘Clustering’ tab offer basic settings for the way the cluster plots are displayed.
The number of columns for the cluster plot can be set, which determines how many
cluster panels are displayed horizontally (one panel per cluster). This number, de-
pending on the number of clusters, determines width of the panels (height is set to
400 pixels per row/panel).

It is furthermore possible to set which time-series variable should be represented
on the y-axis. When multiple time-series variables are available in the data, a second
y-axis (on the right of the plot) can be chosen. In this way, multiple representations
can be visually inspected for how they compare among each other, independent of
whether they were actually used as a variable for clustering or not.

25

Note that the plot settings apply to displaying the plot in the application. Saving
the plot takes the width and height as set in the application’s general settings (Section
7).

5.6 Cluster outputs

After each clustering, a plot and a table are generated. HAC additionally provides
a dendrogram for initial inspection of the results. The output are discussed in the
following.

5.6.1 Dendrogram (HAC only)

HAC provides the researcher with a dendrogram, a tree-structure showing the out-
come of each merge. The dendrogram provides a first visualisation of the clustering
process. On the basis of the dendrogram the researcher can decide on the amount
of clusters. The dendrogram also provides insight in the scale of the fO differences
between the clusters. Since the largest numerical differences between clusters are
found at the top of the dendrogram, an initial analysis might reveal only the dif-
ferences involving a larger fO range. In such an initial outcome, the dendrogram is
likely to show asymmetry. This asymmetry is the result of late adjoining of major
f0 excursions (e.g. large boundary tones) with a cluster containing all smaller scale
(e.g. phrase-internal) f0 excursions. Asymmetry can be avoided to some extent by
choosing a speaker correction method that accounts for outliers. Initial clustering
outcomes thus provide insight into contour differences of the largest scale. Smaller
scale differences, such as f0 peak height, are more likely to be successfully revealed
when increasing the number of clusters. However, large numbers of clusters might
result in clusters consisting of few contours, compromising the prototypicality of
these contours. To accurately reveal small scale fO differences, it is recommended to
analyse a more homogeneous (controlled) dataset, or a subset of the data leaving out
large-scale fO excursions.

5.6.2 Plot

The plot shows the average values of the time-series variable(s) that were used for
clustering (y) for each measurement point (x). The grey band around the values
represents the standard deviations. A panel is displayed for each cluster, with the
cluster number and number of observations in that cluster (n) given in the heading.

26

If duration is taken into account as a clustering variable, the panel headings also
display the mean duration (d) per cluster.

It is plausible that some of the clusters in the plot show highly similar contours.
This is to be expected with a (recommended) high number of clusters for initial
analysis. It is recommended to not solely rely on the plot of mean contours to
inspect the potential similarity between two clusters. It might not be immediately
clear why two similar contours end up in separate clusters. Inspection of the actual
acoustic differences between the contours is recommended in such a case. This can
be done by reading the fO values from the plot. These values should be compared to
more obvious differences between other clusters obtained from the same analysis. For
example, rising phrase final boundary tones could have a large f0 range and therefore
be visually easy to detect. This type of “landmark” in the contour can provide an
indication of the scale of the differences between clusters. Thus, visually similar
contours in separate clusters might also be the result of small numerical differences
which could be more accurately clustered after subsetting. Decreasing the number
of assumed clusters could also be considered as a means to obtain visually more
distinguished contours (an example of such a consideration is given in Kaland, 2021,
Section 3). However, this method makes the cluster analysis more course-grained,
introducing a higher risk of overlooking relevant contour differences.

5.6.3 Table

The summary table shows the number of observations per cluster, the percentage of
the number of observations in the cluster relative to all observations, and for each
clustering variable the mean standard error per cluster. The mean standard error
per cluster is calculated by adding up the standard errors for each measurement
point and divide the outcome by the number of measurement points. A tentative
indication (flagging) is given of whether a cluster should be treated with caution. The
flagging is given by a * based on the data in the table. That is, caution is advised
when a cluster contains only one contour or when the mean standard error is more
than two times the median of the mean standard errors of all clusters. The rationale
behind the latter threshold is to obtain a single criterion that can be applied to O
values regardless of the speaker correction method or number of clusters chosen. In
particular, standard errors might be affected by some of these correction methods.
By taking the median as center value, the distance from zero (no deviation) is known.
Thus, mean standard error values that lie further away from median than zero does,
are advised to be treated with caution. The criterion is a rough estimate of how
deviant the mean contour in a particular cluster is.

27

Individual inspection is still advised to be able to quantify the standard errors on a
f0 scale. Therefore, the inspection should be done before applying speaker correction.
For example, a single cluster with a mean standard error of 10 Hz might already be
enough to overlook potentially meaningful differences between the contours. That
is, the f0 range for human speech can be taken as 75 to 500 Hz (standard setting in
Praat; Boersma and Weenink, 2022). Thus, allowing for an average deviation of up
to 10 Hz for the entire contour corresponds to a semitone difference that lies between
0.3 (480-500 Hz) and 2.2 (75-85 Hz). It has been shown that in Dutch, for example,
1.5 ST excursions (locally!) can be enough to perceive a linguistically meaningful
prominence shift (Rietveld and Gussenhoven, 1985). Although the generalizability
of this finding to other languages is open to further research, it is crucial to note
that within cluster variance of 10 Hz might not fully avoid overlooking important
f0 movements in the contour. The double-median threshold for the mean standard
errors could therefore be too crude without consideration of the fO scale. While
smaller standard errors are generally preferred, increasing the number of assumed
clusters can help to gain insight into this type of variability and is recommended prior
to any subsetting procedures. The standard errors can thus be taken as an indication
of how well the contours fit in the cluster. As a rule of thumb: if homogeneously sized
clusters with a low mean standard error can be achieved with subsetting applied only
to discard erroneous cases, the analysis is likely to provide an optimal outcome.

A contingency table can be generated after each clustering. The contingency ta-
ble generates one row per cluster and columns for each level of a chosen variable. In
this way, the contingency table may act as first interpretation of the clustering with
regard to the variables that are relevant for the research question. The variable can
be copied/extracted from an existing character column (i.e., ‘interval label’). The
extraction steps are similar to the ones explained for mapping the ‘speaker’ column
(Section 4.4):

1) select the column containing the variable
2) select the separator character (if any)
3) select the column with the relevant levels of the variable after separation.

Note that each unique character string found in step 3 will become a column in the

contingency table. The extracted column will be displayed after step 3 for further
inspection.

28

5.7 Subsetting

A procedure for subsetting the data is provided in the application (tab ‘Clustering’,
subtab ‘Table’). Clicking ‘Remove clusters’ provides an option to eliminate the
observations in specific clusters. Note that this is irreversible within one session,
i.e., data needs to be measured or uploaded again in order to have the complete
dataset. The application automatically lists the flagged clusters as candidates for
removal.

The removal procedure (henceforth ‘subsetting’) has two purposes. Its initial
use can be applied to a high number of clusters (Kaland, 2021, Section 3 and 4 for
examples) in order to remove erroneous or outlying contours. For this purpose, a high
number of clusters (e.g., 25 or more) is recommended to obtain small sized clusters.
If the data consists of erroneous or outlying contours, these will then be revealed in
small sized clusters, potentially single-contour clusters. Thus, when removing small
sized clusters, the risk of discarding error-free contours remains low. This way of
“pruning” the data can be done using the automatic flagging of erroneous/outlying
contours (Section 5.6.3).

A second purpose of the subsetting is to “zoom in” into a specific subset of the
data, typically after initial round(s) of clustering. For example, initial clustering
could reveal a small number of rising contours among an overall majority of falling
contours. It could be useful to separate the rises and falls in subsets and perform
subsequent clustering on either subset. This has the advantage of revealing smaller
scale differences between the contours (e.g. different types of rises or falls), without
their differences being affected by contours of the other category. Such an application
of the subsetting procedure is particularly useful when there is clear indication or
supportive evidence from distinguishing these two types as categories.

A general word of caution should be given here, as subsetting essentially ig-
nores (potentially large) parts of the collected data. This procedure compromises
the representativeness of the empirical investigation and re-introduces the risk of
giving researchers’ intuitions a decisive role in the analysis-process. Although these
disadvantages cannot be entirely avoided, it is crucial to keep the ultimate goal of
the investigation in mind. The procedures outlined here are designed to reveal pro-
totypical contours, for which some deviant instances can be naturally expected in
spontaneous speech (see further discussion in Kaland, 2021, Section 3).

29

5.8 Evaluation

The application provides an additional interface to evaluate the ideal number of
clusters (tab ‘Evaluation’). Two methods are implemented; one based on information
cost (Shannon, 1948) and minimum description length (MDL, Rissanen, 1978) as
described in Kaland and Ellison (2023), and one based on within and between cluster
variance. In case multiple clustering variables were chosen, the evaluation is based
on the first (preventing the treatment of different scales as identical).

The first evaluation method computes information cost of three aspects of the
cluster analysis; 1) the cost of specifying the clusters, which is expected to increase
with more clusters, 2) the probability of a contour being in a specific cluster, given
what the prototype (mean) of that cluster is, which is likely to decrease with more
clusters, and 3) the cost of specifying each contour within a certain cluster, this is
likely to increase with more clusters, depending on how well an individual contour
fits the cluster (see details and demonstration in Kaland and Ellison, 2023). The
summed outcome is then taken as a single evaluative information cost measure for
one round of cluster analysis (one ‘clustering’).

When applied over a range of clusterings, e.g. starting with two clusters up to
ten clusters, the evaluation measures for each clustering round are likely to produce
a U shaped curve when the number of clusters are plotted on the x-axis and the
information cost measure on the y-axis. The user is required to specify the range
of cluster rounds and a bending factor (measurement point dependency value). The
former indicates the number of clusters that should be assumed for the first and the
last round of cluster analysis that should be evaluated. The evaluation then runs
those rounds and all rounds with intermediate numbers of clusters. The dependency
value indicates how dependent adjacent measurement points are, with higher values
corresponding to higher degrees of dependency. Note that this is a way to take
into account the length of the unit of analysis, which could range from (portions
of) syllables (high dependency) to entire utterances (low dependency). The bending
factor value can be manually set (with decimals, if needed). This might be needed
to obtain a clearer U shaped bend in the plotted curve, but should be informed by
the unit of analysis and the absolute time-gap between measurement points. When
analysing a dataset for which time-normalization has been done outside the provided
Praat- or R-scripts, the bending factor needs to be adjusted accordingly.

The MDL evaluation procedure generates a plot with the information cost for
each clustering round. The clustering round with the lowest information cost is
the MDL and could be taken as the ideal number of clusters for the dataset under
analysis. Note that all evaluation is based on the specific dataset under analysis

30

and does therefore not directly allow generalization for the contour inventory of that
specific language.

The second evaluation method is based on within and between cluster variation.
It is expected that within cluster variance of the fO contours decreases with more
clusters, because with more clusters the individual contour within a certain cluster are
more alike than with less clusters. In addition, between cluster variance is expected to
increase with more clusters as the mean fO contour in a certain cluster will differ more
from the mean f0 contours in other clusters (i.e. more varying mean contours with
more clusters). Note that these principles do not necessarily apply when choosing
centroid-based linkage criteria (inversion), see Table 5.2.

Within cluster variance is computed by taking the standard deviation of each mea-
surement point iteratively for all measurement points in a cluster. That is, starting
with cluster 1, the standard deviation is taken from all the first measurement points
in that cluster, then the standard deviation is taken from all the second measure-
ment points in that cluster (etc.), until the final measurement point in that cluster.
Then, the mean of all the standard deviations is taken to represent the variance in
that cluster, after which the same procedure is repeated for the remaining cluster(s).
Thereafter, all the mean standard deviations (one per cluster) are averaged again to
represent within cluster variance for one clustering.

Between cluster variance is computed by taking the mean fO value of a measure-
ment point across clusters. That is, starting with measurement point 1, their mean
value in each cluster is taken iteratively for all clusters. Then, the absolute difference
between the maximum and the minimum of these mean values is taken to represent
the between cluster variance of that particular measurement point. This procedure
is repeated for all measurement points and the single value representing the between
cluster variance of a particular clustering is the mean of all these difference measures.

In order to make the within and between cluster variance comparable, the values
are scaled between 0 and 1. The scaling is done for each evaluation round. For
example, if an evaluation round is set to compare clusterings ranging from 2 to 10
clusters (9 clusterings), the resulting 9 values representing within cluster variance as
well the 9 values representing the between cluster variance are scaled.

Theoretically, the optimum clustering is the one for which the lowest within clus-
ter variance and the highest between cluster variance is observed. The optimum
number of clusters will thus lie behind the cross-over point of both variances. De-
pending on the curvature of the variances a clear optimum might be observed, which
is reached for the number of clusters before the distance between the two variances no
longer or only minimally increases. Note that the cluster variance evaluation method
is sensitive to the range of clusterings taken into account. That is, the scaled variance

31

might vary to some extent depending on the range of clusterings. It is recommended
to observe the relative gain or loss in the curves representing within/between clus-
ter variance. If a ceiling or floor effect can be observed, this could be taken as an
indication that extending the maximum of the selected range is no longer needed.
Rather, if the ceiling or floor is stretched over multiple clustering rounds at the high
end of the range, the optimum lies well before the clustering round with the highest
number of clusters. It is recommended to have an informed idea about the maximum
number of clusters to test in the evaluation.

The two evaluation methods do not need to show corresponding results. It is
important to note that the approaches have different backgrounds and use therefore
different ways to express the optimal number of clusters. One method seeks the
optimum in terms of informativeness of describing the dataset. The other method
provides insight into the clustering process and how the contour variation is dis-
tributed within or between clusters. That is to say that they can both provide useful
perspectives on what the number of clusters to choose could be.

32

6. Data conventions

The following sections describe the main data objects stored in R’s working memory
by the names with which they are stored. This explanation provides (advanced) users
with a basic understanding of how the application handles the data. All objects with
a name starting with ‘df.” refer to data tables (package data.table, Barrett et al.,
2006). It is possible to directly access these objects from the R Global Environment
(see Section 7.4).

6.1 df.u

This is the data as uploaded by the user and read by data.table::fread(). This
data is displayed in the tab ‘Data (upload)’ immediately after uploading and before
mapping the columns to the required ones. If uploaded data is not correctly dis-
played, either change the way the data is stored or specify additional options in the
syntax of the fread () function.

6.2 df.g

This is the data as read from the textgrids by readtextgrid::read textgrid()
(Mahr, 2020). The data provides all information in the textgrids as a data table and
can be viewed in the ‘Data (TextGrids)’ tab. This tab offers a way to check whether
the textgrids are read correctly.

6.3 df.l

This is the main data with which the application works. It is generated on the basis
of the uploaded (‘df.u’) or read (‘df.g’) data and has the long format. This means

33

that each row represents a single measurement point. Table 4.1 provides an overview
of the columns that are minimally needed in this data.
All columns that refer to variables for clustering have a specific template for their

naming. The names are concatenated character strings following the structure in Ta-
ble 6.1.

Table 6.1: Clustering variable column naming conventions in ‘df.l’. Concatenation
of strings from left to right, one string taken per column in the table, with optional
strings in brackets. N.B. octave-median rescaling, derivation and fPCA are only
available for f0. Standardization is available for all cues.

default cue scale [spk.corr] [derivation] [fPCA]
Mz PC1
.0 .ERB std .d1 PC2
.cc .ST oMe .d2 PC{n}
.int .dB .d3)
.dur .8

Thus, cc.f0.ERB.oMe.PC2 is the name of the column that contains the PC2
values taken from octave-median rescaled ERB values of fundamental frequency.
And cc.f0.Hz.d1 is the name of the column that contains the velocity values of the
fundamental frequency values in Hertz. And cc.dur.std is the name of the column
with standardized duration values.

6.3.1 Singleton vs. time-series

The long data has the format of each row per measurement point , which is mainly
the case to cater for time-series variables such as f0 and intensity. This is because
time-series measures represent the interval by the chosen number of measurement
points. Duration values and principal component values are singleton measures in
the sense that they represent the interval by a single value. Singleton measures are
written to the data at stepnumber 1 (the other measurement points are NA), see
Section 6.

Clustering with singleton measures restricts the use of distance metrics. That
is, only distance metrics based on Euclidean distance are available. Other distance
metrics are exclusively applicable to time-series measures.

34

6.3.2 Decimals

All numeric values in ‘df.]’ have a maximum of three decimals, in order to avoid
bloated datafiles and reduce processing speed.

6.4 df.e

This data is obtained from the evaluation procedure and lists for each clustering
round either an information cost value (MDL) or a combination of within and be-
tween cluster variance. This data is used to generate the evaluation plot and is
displayed underneath it.

35

7. Settings

A number of general settings is provided that apply to one session of running the
application. They are discussed one by one in the following.

7.1 Number of rows to display

This setting specifies how many rows should be displayed when viewing data (any of
the sets described in Section 6. This number is by default limited to 50 as to prevent
large datasets requiring long rendering times.

7.2 File upload limit

This sets the limit for uploading files to the application in megabytes. Depending on
the computer, the way in which the application is run, and the size of the data, this
setting provides a way to prevent the application from being slow due to the upload
of large datasets. Note that with each addition of an acoustic cue representation
(Section 4.6), additional values are written to the data and will make the data object
larger in size after uploading. Adding a representation after a file has been uploaded
is not affected by the upload limit. Therefore, it could be more important to start
with a small dataset when uploading.

7.3 Saving

The application provides options to save the logfile, the data, the cluster plot, the
summary table, the contingency table, and the evaluation plot. Individual ‘Save’
buttons are available for each. Alternatively, ‘Save this’ can be clicked to save all
available output at once in a folder called ‘saved’ (in the directory from which the

36

application is run). Additional saving settings are provided in the application set-
tings. These include setting the width and height in pixels for all plots that can
be saved. It is furthermore possible to generate a compressed file (.zip) with for all
outputs saved through the ‘Save this’ button. The compressed file is given a date
and number of clusters in the filename for future reference.

Note that the data in long format is saved such that it can be re-uploaded to the
application in a future session (see also Section 6).

7.4 Keeping objects

In order to keep the objects that were generated by the application in the Global
Environment of R, it is possible to set this option. Keeping objects is useful for
debugging purposes or for continuing to work with the data after the application
was closed. See Section 6 for an overview of the relevant objects. Keeping objects in
the Global Environment lasts as long as the R-session and still requires saving them
manually if this is desired. By default, the objects generated by the application are
removed upon closing.

7.5 Garbage collection

Runs R’s garbage collection function gc(). This function is only needed if the
application is slow, in which case the effects might be minimal. Garbage collection
happens automatically in R regardless of manually running this function.

7.6 Logfile

The application automatically writes a lines of text to a logfile for each relevant step
in the workflow. The logfile provides all information needed to reproduce the specific
steps in a session. It is highly recommended to save the logfile each time any of the
cluster outputs are saved.

37

8. References

Barrett, T., Dowle, M., Srinivasan, A., Gorecki, J., Chirico, M., Hocking, T., &
Schwendinger, B. (2006). Data.table: Extension of ‘data.frame’ [Institution:
Comprehensive R Archive Network Pages: 1.16.4]. https://doi.org/10.32614/
CRAN.package.data.table

Boersma, P., & Weenink, D. (2022). Praat: Doing Phonetics by Computer. http:
//www.praat.org/

Chang, W., Cheng, J., Allaire, J., Sievert, C., Schloerke, B., Xie, Y., Allen, J.,
McPherson, J., Dipert, A., & Borges, B. (2012). Shiny: Web Application
Framework for R [Institution: Comprehensive R Archive Network Pages: 1.10.0].
https://doi.org/10.32614/CRAN.package.shiny

Charrad, M., Ghazzali, N., Boiteau, V., & Niknafs, A. (2014). NbClust: An R Package
for Determining the Relevant Number of Clusters in a Data Set. Journal of
Statistical Software, 61(6). https://doi.org/10.18637 /jss.v061.106

De Looze, C., & Hirst, D. (2014). The OMe (Octave-Median) scale: A natural scale
for speech melody. 7th International Conference on Speech Prosody 2014, 910—
914. https://doi.org/10.21437 /SpeechProsody.2014-170

Esling, P., & Agon, C. (2012). Time-series data mining. ACM Computing Surveys,
45(1), 1-34. https://doi.org/10.1145/2379776.2379788

Goldstein, J. L. (1973). An optimum processor theory for the central formation of
the pitch of complex tones. The Journal of the Acoustical Society of America,
54(6), 1496-1516. https://doi.org/10.1121/1.1914448

Gordon, M., & Ladefoged, P. (2001). Phonation types: A cross-linguistic overview.
Journal of Phonetics, 29(4), 383-406. https://doi.org/10.1006 /jpho.2001.
0147

Greenwood, D. D. (1961). Critical Bandwidth and the Frequency Coordinates of the
Basilar Membrane. The Journal of the Acoustical Society of America, 33(10),
1344-1356. https://doi.org/10.1121/1.1908437

38

https://doi.org/10.32614/CRAN.package.data.table
https://doi.org/10.32614/CRAN.package.data.table
http://www.praat.org/
http://www.praat.org/
https://doi.org/10.32614/CRAN.package.shiny
https://doi.org/10.18637/jss.v061.i06
https://doi.org/10.21437/SpeechProsody.2014-170
https://doi.org/10.1145/2379776.2379788
https://doi.org/10.1121/1.1914448
https://doi.org/10.1006/jpho.2001.0147
https://doi.org/10.1006/jpho.2001.0147
https://doi.org/10.1121/1.1908437

Gubian, M., Torreira, F., & Boves, L. (2015). Using Functional Data Analysis for
investigating multidimensional dynamic phonetic contrasts. Journal of Pho-
netics, 49, 16-40. https://doi.org/10.1016/j.wocn.2014.10.001

Hermes, D. J. (1998). Measuring the Perceptual Similarity of Pitch Contours. Journal
of Speech, Language, and Hearing Research, 41(1), 73-82. https://doi.org/
10.1044/jslhr.4101.73

Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast
accuracy. International Journal of Forecasting, 22(4), 679-688. https://doi.
org/10.1016/j.ijforecast.2006.03.001

Jun, S.-A., & Fletcher, J. (2014). Methodology of studying intonation: From data
collection to data analysis. In S.-A. Jun (Ed.), Prosodic Typology II (pp. 493—
519). Oxford University Press. https://doi.org/10.1093/acprof:0so/9780199567300.
003.0016

Kaland, C. (2021). Contour clustering: A field-data-driven approach for documenting
and analysing prototypical f0 contours. Journal of the International Phonetic
Association, 53 (1), 159-188. https://doi.org/10.1017/S0025100321000049

Kaland, C., & Ellison, T. M. (2023). Evaluating cluster analysis on f0 contours: An
information theoretic approach on three languages. In R. Skarnitzl & J. Volin
(Eds.), Proceedings of the 20th International Congress of Phonetic Sciences
(pp. 3448-3452). Guarant International. https://sfb1252.uni-koeln.de/sites/
sfb_1252 / user_upload / Pdfs_Publikationen / Kaland_Ellison_2023_Evaluating_
cluster_analysis.pdf

Kaufman, L., & Rousseeuw, P. J. (Eds.). (1990). Finding Groups in Data. John Wiley
& Sons, Inc. https://doi.org/10.1002/9780470316801

Kaufmann, L., & Rousseeuw, P. (1987). Clustering by means of medoids. In Y. Dodge
(Ed.), Data Analysis based on the L1-Norm and Related Methods (pp. 405—
416). North Holland / Elsevier. https://www.researchgate.net/profile /Peter-
Rousseeuw / publication /243777819_Clustering_by_Means_of _Medoids /links /
00b7d531493fad342c¢000000/ Clustering-by-Means-of-Medoids.pdf

Lindblom, B. (1986). Phonetic universals in vowel systems. In J. Ohala & J. Jaeger
(Eds.), Ezperimental Phonology (pp. 13-44). Academic Press.

Maechler, M., Rousseeuw, P., Struyf, A., & Hubert, M. (1999). Cluster: ”Finding
Groups in Data”: Cluster Analysis Extended Rousseeuw et al. [Institution:
Comprehensive R Archive Network Pages: 2.1.8]. https://doi.org/10.32614/
CRAN.package.cluster

Mahr, T. (2020). Readtextgrid: Read in a 'Praat’ "TextGrid’ File [Institution: Com-
prehensive R Archive Network Pages: 0.1.2]. https://doi.org/10.32614 /
CRAN.package.readtextgrid

39

https://doi.org/10.1016/j.wocn.2014.10.001
https://doi.org/10.1044/jslhr.4101.73
https://doi.org/10.1044/jslhr.4101.73
https://doi.org/10.1016/j.ijforecast.2006.03.001
https://doi.org/10.1016/j.ijforecast.2006.03.001
https://doi.org/10.1093/acprof:oso/9780199567300.003.0016
https://doi.org/10.1093/acprof:oso/9780199567300.003.0016
https://doi.org/10.1017/S0025100321000049
https://sfb1252.uni-koeln.de/sites/sfb_1252/user_upload/Pdfs_Publikationen/Kaland_Ellison_2023_Evaluating_cluster_analysis.pdf
https://sfb1252.uni-koeln.de/sites/sfb_1252/user_upload/Pdfs_Publikationen/Kaland_Ellison_2023_Evaluating_cluster_analysis.pdf
https://sfb1252.uni-koeln.de/sites/sfb_1252/user_upload/Pdfs_Publikationen/Kaland_Ellison_2023_Evaluating_cluster_analysis.pdf
https://doi.org/10.1002/9780470316801
https://www.researchgate.net/profile/Peter-Rousseeuw/publication/243777819_Clustering_by_Means_of_Medoids/links/00b7d531493fad342c000000/Clustering-by-Means-of-Medoids.pdf
https://www.researchgate.net/profile/Peter-Rousseeuw/publication/243777819_Clustering_by_Means_of_Medoids/links/00b7d531493fad342c000000/Clustering-by-Means-of-Medoids.pdf
https://www.researchgate.net/profile/Peter-Rousseeuw/publication/243777819_Clustering_by_Means_of_Medoids/links/00b7d531493fad342c000000/Clustering-by-Means-of-Medoids.pdf
https://doi.org/10.32614/CRAN.package.cluster
https://doi.org/10.32614/CRAN.package.cluster
https://doi.org/10.32614/CRAN.package.readtextgrid
https://doi.org/10.32614/CRAN.package.readtextgrid

Max Planck Institute for Psycholinguistics. (2022). ELAN [https://archive.mpi.nl/tla/elan].
Retrieved July 11, 2019, from https://archive.mpi.nl/tla/elan

Mixdorff, H., & Niebuhr, O. (2013). The influence of F0O contour continuity on promi-
nence perception. Interspeech 2013, 230-234. https://doi.org/10.21437/
Interspeech.2013-73

Nespor, M., & Vogel, 1. (2007). Prosodic Phonology: With a New Foreword [Google-
Books-ID: GAETNIP_H34C]. New York : Mouton de Gruyter.

Noll, A., Stuefer, J., Klingler, N., Leykum, H., Lozo, C., Luttenberger, J., Pucher,
M., & Schmid, C. (2019). Sound tools eXtended (stx) 5.0 — a powerful sound
analysis tool optimized for speech [ISSN: 2958-1796]. Interspeech 2019, 2370~
2371.

R Core Team. (2022). R: The R project for statistical computing [Version 4.2.1].
https://www.r-project.org/

R Studio Team. (2023). RStudio: Integrated Development for R. Retrieved July 11,
2019, from https://www.rstudio.com/

Ramsay, J. (2003). Fda: Functional Data Analysis [Institution: Comprehensive R
Archive Network Pages: 6.1.8]. https://doi.org/10.32614/CRAN.package.fda

Reynolds, A. P., Richards, G., De La Iglesia, B., & Rayward-Smith, V. J. (2006).
Clustering Rules: A Comparison of Partitioning and Hierarchical Clustering
Algorithms. Journal of Mathematical Modelling and Algorithms, 5(4), 475-
504. https://doi.org/10.1007/s10852-005-9022-1

Rietveld, A., & Gussenhoven, C. (1985). On the relation between pitch excursion
size and prominence. Journal of Phonetics, 13(3), 299-308. https://doi.org/
10.1016/S0095-4470(19)30761-2

Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14(5), 465—
471. https://doi.org/10.1016,/0005-1098(78)90005-5

Rose, P. (1987). Considerations in the normalisation of the fundamental frequency
of linguistic tone. Speech Communication, 6(4), 343-352. https://doi.org/10.
1016,/0167-6393(87)90009-4

Scheffers, M. T. M. (1983). Simulation of auditory analysis of pitch: An elaboration
on the DWS pitch meter. The Journal of the Acoustical Society of America,
74(6), 1716-1725. https://doi.org/10.1121/1.390280

Schubert, E., & Rousseeuw, P. J. (2019). Faster k-Medoids Clustering: Improving
the PAM, CLARA, and CLARANS Algorithms [Series Title: Lecture Notes
in Computer Science]. In G. Amato, C. Gennaro, V. Oria, & M. Radovanovi¢
(Eds.), Similarity Search and Applications (pp. 171-187). Springer Interna-
tional Publishing. https://doi.org/10.1007/978-3-030-32047-8_16

40

https://archive.mpi.nl/tla/elan
https://doi.org/10.21437/Interspeech.2013-73
https://doi.org/10.21437/Interspeech.2013-73
https://www.r-project.org/
https://www.rstudio.com/
https://doi.org/10.32614/CRAN.package.fda
https://doi.org/10.1007/s10852-005-9022-1
https://doi.org/10.1016/S0095-4470(19)30761-2
https://doi.org/10.1016/S0095-4470(19)30761-2
https://doi.org/10.1016/0005-1098(78)90005-5
https://doi.org/10.1016/0167-6393(87)90009-4
https://doi.org/10.1016/0167-6393(87)90009-4
https://doi.org/10.1121/1.390280
https://doi.org/10.1007/978-3-030-32047-8_16

Schubert, E., & Rousseeuw, P. J. (2021). Fast and eager k -medoids clustering: O (
k) runtime improvement of the PAM, CLARA, and CLARANS algorithms.
Information Systems, 101, 101804. https://doi.org/10.1016/j.is.2021.101804

Scitovski, R., Sabo, K., Martinez-Alvarez, F., & Ungar, S. (2021). Cluster analysis
and applications. Springer Nature. https://doi.org/10.1007/978-3-030-74552-
3

Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System
Technical Journal, 27(3), 379-423. https://doi.org/10.1002/j.1538-7305.
1948.tb01338.x

Silverman, B. W. (1986). Density estimation for statistics and data analysis. Chap-
man & Hall/CRC.

Winkelmann, R., Bombien, L., Scheffers, M., & Jochim, M. (2023). Wrassp: Interface
to the "ASSP’ library (manual). https://CRAN.R-project.org/ package=
wrassp

Xu, Y., & Sun, X. (2002). Maximum speed of pitch change and how it may relate to
speech. The Journal of the Acoustical Society of America, 111(3), 1399-1413.
https://doi.org/10.1121/1.1445789

41

https://doi.org/10.1016/j.is.2021.101804
https://doi.org/10.1007/978-3-030-74552-3
https://doi.org/10.1007/978-3-030-74552-3
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://CRAN.R-project.org/package=wrassp
https://CRAN.R-project.org/package=wrassp
https://doi.org/10.1121/1.1445789

9. Index

acceleration, 16

acoustic measurements, 11

alignment, 21

application settings, 36

ASCII, 10

autocorrelation (distance metric), 20,
21

bending factor, 30
between cluster variance, 31
browser window, 7

cleaning, 15

cluster analysis, 19
clustering method, 21
clustering variables, 19
columns, 9, 34
contingency table, 5, 28

data (tab), 9

data conventions, 33
decimals, 35

dendrogram, 22, 25, 26
derivatives, 16

display rows, 36

distance metric, 20, 34
duration, 14, 18

dynamic time warping, 20, 21

Euclidean distance, 20

42

evaluation, 30, 35
extrapolation, 11-13

f0 ceiling, 11

f0 correction, 16

fO fit, 11

f0 floor, 11

f0 scale, 16

f0 smoothing, 11-13
f0 time-step, 12

file encoding, 10
flagging, 27

fPCA, 16, 17

garbage collection, 37
Global Environment (R), 37

HAC, 21
hierarchical agglomerative clustering
(HAC), 21

information cost, 30
intensity, 13, 18
interpolation, 11-13
interval tier, 5
inversion risk, 23

jerk, 16
kernel density estimation (KDE), 11
lambda, 17

linkage criterion, 22
logfile, 37
long format, 9, 33, 34

MASE, 20, 21

MDL, 30

mean standard error, 5, 27
medoid, 24

minimum description length (MDL),

30
Modified Harmonic Sieve, 11
multivariate clustering, 19

number of clusters, 5, 25-27, 29, 30
number of measurement points, 12,

13, 34

objects, 33, 37
observations, 5
octave jump, 13

octave-median rescaling, 16, 17
optimizers (PAM), 24

packages, 7, 20
PAM, 24

partitioning around medoids (PAM),

24
Pearson correlation, 20, 21
phonation, 11
plot output, 26
plot settings, 25
principal component analysis, 16
problems (cleaning), 15
prototypicality, 26, 29

read folder, 10

43

remove clusters, 29
representations, 16, 19
RMSE, 20

run application, 7

sampling, 13

saved-folder, 36

saving, 26, 36

segmentation, 5

singleton measure, 14, 17, 20, 34
smoothing bandwidth, 11
speakers, 15

speed of processing, 10, 24, 35-37
standardization, 16-18
subsetting, 10, 17, 22, 27-29
summary table, 27

table output, 27, 28
textgrid, 4, 5, 10, 33
time-series measure, 12, 14, 34

unit of analysis, 4, 5, 10, 12, 30
upload file (tab), 9, 33, 36
upload limit, 36

UTF-8, 10

velocity, 16

window size, 7

within cluster variance, 31
workflow, 7

www-folder, 13

z-scoring, 16, 18
zip file, 37

	Tips to get started
	Requirements
	Unit of analysis
	Dataset
	Segmentation

	Workflow
	Run app

	Data
	Load file
	Read folder
	Acoustics
	F0 floor and ceiling
	F0 fit
	F0 smoothing bandwidth
	F0 time-step
	Number of measurement points
	Sampling
	Intensity
	Duration

	Speakers
	Clean
	Representations
	F0
	Intensity
	Duration

	Clustering
	Variables for clustering
	Distance metric
	Clustering method
	Hierarchical agglomerative clustering - HAC
	Partitioning around medoids - PAM

	Number of clusters
	Plot settings
	Cluster outputs
	Dendrogram (HAC only)
	Plot
	Table

	Subsetting
	Evaluation

	Data conventions
	df.u
	df.g
	df.l
	Singleton vs. time-series
	Decimals

	df.e

	Settings
	Number of rows to display
	File upload limit
	Saving
	Keeping objects
	Garbage collection
	Logfile

	References
	Index

