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1. Requirements

First, the three minimal requirements are discussed, which need to be fulfilled before
the clustering approach can be applied. Although the required scripts are commented
in a detailed way and provide references to the corresponding sections in this manual,
a basic understanding of scripting in both Praat (Boersma and Weenink, 2022) and
R (R Core Team, 2020; R Studio Team, 2020) is helpful.

1.1 Unit of analysis

The researcher is required to decide which linguistic unit of analysis needs to be
investigated. The unit of analysis depends on which level of prosody is subject to
the interest of the researcher (e.g. word or phrase level). For example, the procedure
can be applied to investigate tonal contrasts at the lexical level as well as contours at
the phrase level. In the former, the unit of analysis would typically be the syllable or
word, whereas in the latter the unit of analysis would typically be the phrase. Note
that some understanding of the prosodic relevance of these units in the language
under investigation needs to be present. It is beyond the scope of this manual to
provide fieldwork paradigms that help to identify the units that are relevant in the
prosody of certain language. Studies have shown that cross-linguistic validation of
prosodic units is crucial. With respect to intonation units, instructions to indicate
“distinct units perceivable by means of a coherent melody” (Himmelmann et al.,
2018, p. 6) lead to considerable agreement among native and non-native annotators
in different languages. This would hint at the universal nature of intonation unit
perception, possibly cued by boundary tones.

Selecting the unit of analysis offers an opportunity to restrict the collected data
according to the demands of the research question. For example, one could select
only phrase final syllables/words, only question phrases, or only phrases occurring
between two silent intervals (i.e. pauses) of a specific length. In principle there is
no restriction as to which unit can be analysed and the chosen unit can be further
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restricted by specifying a time-range (e.g. syllables/words/phrases with a certain
duration). However, the decision for a unit has a couple of implications for later
steps in the procedure. For this reason, it is advisable to keep the unit of analysis
the same throughout one analysis, i.e. not comparing syllable-level f0 movements
with those found in phrases.

1.2 Dataset

The researcher should have access to a collection of audio-recordings and corre-
sponding annotations in Praat textgrids (Section 1.3 for annotation requirements),
consisting of sufficient observations. What a sufficient amount of observations is, will
depend on the quality of the recordings and a number of later steps in the analy-
sis. For example, when only four clusters need to be identified, less observations are
needed than when eight clusters need to be identified (see Section 2.2.4 for instruc-
tions on the number of clusters). It is likely that some data needs to be discarded
due to f0 measurement errors. It is therefore recommended to collect more units than
strictly speaking needed. In the phrase contour example (Article section 3), 321 con-
tours were used for initial analysis, on the basis of which at least one clearly defined
follow-up hypothesis could be formulated concerning potential functional differences
between in the contours. For the tonal analysis (Article section 4) the contours of
213 syllables were analysed and again provided insightful results for further test-
ing. Another indication of whether the dataset is large enough for cluster analysis
can be obtained from the standard errors within each cluster (provided in the out-
put, section 2.2.5). Large standard errors indicate large variance within the cluster,
which could be the result of (too) few observations. It is important to note that
in general more observations will often lead to more representative results and that
the ideal size of the dataset largely depends on decisions taken during the analysis
(see Section 2.1 and 2.2). Unbalanced datasets are not necessarily problematic for
the cluster analysis. For example, a dataset with 5% questions and 95% statements
could be accurately distinguished assuming that their difference is marked by means
of distinct f0 contours.

1.3 Segmentation

Once the unit of analysis and the dataset are decided upon, the researcher needs
to segment all units of analysis on an interval tier in a Praat textgrid (Boersma
and Weenink, 2022). This means that the left and right boundary of each unit
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(an interval) need to be indicated. It is highly recommended to label the units
using glosses in the language under investigation or another common language (e.g.
English), or ideally both. The more information is available in the textgrid for each
unit, the more solid the interpretation of the results can be after analysis. This
information can include other linguistic aspects that are not necessary included in
the initial intonation analysis (e.g. segments, syllables, words, phrases, discourse
units, grammatical annotations). For a typical dataset, the researcher has access to
a number of audio recordings and corresponding textgrids, which are ideally, but not
necessarily, equal to the number of speakers or sessions sampled in the field or lab.
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2. Workflow

In what follows, two essential components of f0 contour clustering are discussed
in the form of hands-on guidelines that follow the steps a researcher is suggested
to take in the initial stages of the research. These are 1) the collection of time-
series f0 measurements, and 2) the statistical analysis of the f0 measurements and
for generating a cluster-annotated Praat textgrid. Both components are handled
by the gui version of the R-script. The first component can alternatively be run
using the Praat script (potentially faster for larger datasets due to processing speed).
F0 tracking is based on Modified Harmonic Sieve (Scheffers, 1983) in the R-script
(Winkelmann et al., 2023) and on autocorrelation (Boersma, 1993) in the Praat-
script. The R-script provides more intuitive control over the f0 smoothing accuracy
using visual feedback. Note that the use of Praat remains recommended, not just for
annotation using TextGrid, also for post-hoc visual inspection in the Praat editor
window and for merging the generated textgrids with the original ones.

2.1 R-script: obtaining f0 measurements

Time-series f0 measurements require a dataset as described in Section 1. Measures
are taken for each unit of analysis based on a combination of sound files and textgrids.
Note that filenames need to be identical for the script to be able to link the textgrid
annotation to the correct wavefile; only the extensions should differ (e.g. ‘Record-
ing 1.wav’ and ‘Recording 1.TextGrid’). The TextGrid files should have the file
encoding UTF-8 or ASCII and should not be saved as ‘short text file’. Textgrids
not confirming to those conditions cannot be read by the readtextgrid package
(Mahr, 2020). If these textgrids are found, the R gui-version will halt and a warning
message shows which file caused it. Prior to running the f0 measuring, the researcher
is required to set a number of parameters that determine the way the measurements
are taken. Apart from the directories that need to be specified for the respective
audio files, corresponding textgrids and output-files, the parameters concerning the
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f0 analysis are explained in detail below.

2.1.1 Tier

The researcher needs to provide the name of the tier in the textgrid that contains
the units of analysis. The measurements will be taken from the tier specified here.
When multiple files and corresponding textgrids are used, the tier names containing
the units of analysis should be identical across the textgrids.

2.1.2 Pitch minimum and maximum

The upper and lower boundaries of f0 calculation in Praat can be specified by the
researcher. The default minimum of 75 Hz and default maximum of 500 Hz may
be able to capture most f0 movements produced by the human voice. However,
additional control is often desired to account for the gender of the speaker(s) or the
type of phonation (Gordon and Ladefoged, 2001).

2.1.3 Time-step

The time-step setting refers to the frame duration used to calculate f0 (wrassp::mhsF0
‘windowShift = ’). The standard setting used in Praat depends on the pitch mini-
mum (or pitch floor; see Praat Manual “Sound: To Pitch...”; Boersma and Weenink,
2022) and defaults to 10 ms with a minimum of 75 Hz. However, manually specified
time-step provides the researcher another way to configure the resolution of the f0
measures. This might be needed in addition to number of measures and smooth-
ing/stylization resolution. Note that the time-step setting determines how many
measurement points are initially taken for a contour, which at the stage of f0 track-
ing is different from the number of measures setting (Section 2.1.5). For example, for
a 200 ms interval one obtains 20 f0 measures with a 10 ms window and one obtains
40 f0 measures with a 5 ms window. This number of measurement points will be
converted to number of points the user sets to estimate each contour (Section 2.1.5),
i.e. after inter-, extra-polation and smoothing. If the final number of measurement
poins is more than the number of point obtained using the time-step setting, the like-
lihood of inaccurate f0 approximation increases. That is, a contour obtained from 20
measures (e.g. 200 ms interval, 10 ms time-step) will not become more accurate with
a set number of measurement points of 40. The other way around is recommended,
i.e. more f0 measures than the set number of points. Thus, the time-step setting
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offers a way to safeguard that the tracking resolution equals or exceeds the contour
resolution.

2.1.4 F0 fit

F0 is tracked using the Modified Harmonic Sieve method (Scheffers, 1983). This
method aims at detecting f0 in noisy environments by a maximum likelihood estima-
tion from its harmonics (Goldstein, 1973). The f0 fit threshold specifies the minimum
probability for an f0 measurement to fit. Increasing this value makes the detection
algorithm more strict, rejecting more f0 candidates and accepting only the better
fitting ones (more accuracy, less candidates). Decreasing this value will accept more
candidates at the expense of tracking accuracy.

2.1.5 Number of measures

The researcher needs to decide how many f0 measurements are needed to represent
the smoothed contour. It is important to realise that the smoothed contour is already
the product of interpolation, extrapolation and smoothing, potentially based on just
a few tracked f0 points. Representing the smoothed contour by more points than
actually tracked, could be misleading as this potentially generates the illusion of
accurate representation (e.g. representing a smoothed f0 contour by 20 points when
it is based on 5 tracked f0 points, see Section 2.1.3). It is more important whether
eventual turning points in the contour are well represented by both the smoothing
and the number of measurement points. This depends largely on the unit of analysis
and the desired accuracy of the measures. Taking too few measures could lead to
missing essential f0 movements within the contour, whereas too many measures could
give too much importance to insignificantly small f0 measures, although the latter
should be largely taken care of by the smoothing process. Note that the smoothing
process (Section 2.1.6) or stylization process (Section 2.2.6) could also be responsible
for over-estimation of small f0 movements. It is recommended to change the number
of measure only in accordance with the smoothing and stylisation resolution, and the
output of the cluster analysis (Section 2.3.8). It is important to note that inaccurate
f0 measurements are likely to occur for each dataset. The cluster analysis provides an
automatic detection of erroneous and outlying contours, which can then be removed
from the data (Section 2.3.9). Changing the number of measures to account for
a small number of erroneous contours is not recommended, as this affects also the
correct measures. Only if the same type of f0 errors occur repeatedly, changing the
number of measures could be considered.
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2.1.6 Smoothing bandwidth

By default, the f0 measures are interpolated and extrapolated, which means that all
missing f0 points are filled in by linear interpolation and missing f0 points at the edges
are filled in by linear extrapolation using a constant based on the first/last available f0
point. Thereafter, the f0 contour is smoothed using kernel density estimation (KDE).
The applied method is described in Silverman (1986). The smoothing bandwidth
positively correlates with the degree of smoothing (i.e. larger bandwidth = more
smoothing). the bandwidth value is the input of the stats::ksmooth() function.
It is recommended to try out multiple settings and inspect the results using the
sampling method (Section 2.1.7).

2.1.7 Sampling

Before taking f0 measures of an entire dataset, there is an option to sample a specified
number of randomly chosen intervals to inspect the accuracy of the acoustic settings.
In particular the f0 floor/ceiling, number of measurement points and smoothing band-
width should be changed to improve the quality of the output. After each sampling
plots are generated showing the originally tracked f0 points (black solid line) and
the interpolated, extrapolated and smoothed contour (red dashed line). Sampling
provides therefore an essential quality control before doing (cluster) analysis on all
the measures. It is possible that f0 cannot be tracked (accurately) in all intervals;
this will be shown in the sampling plots and NAs will written to the output file.

2.1.8 Measuring

After sampling and setting the acoustic parameters to optimal values, the entire
dataset can be analysed. This process generates a ‘data long.csv’ file in the directory
from which the R-script is run. Thereafter, the contour clustering interface can be
started using this dataset and additional cleanup can be done before cluster analysis.
Note that additional control over octave jumps (Section 2.2.7) can be obtained using
the Praat-script.

2.2 Praat-script: obtaining f0 measurements

Note: the Praat script is no longer needed to perform time-series f0 measures. The
function is built into the R-script (gui).
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The Praat script works highly similar to the R-script, with additional control
over octave jump correction and interval length selection. The stylization resolution
setting in Praat is essentially an alternative to the smoothing process described
above.

2.2.1 Tier

See Section 2.1.1.

2.2.2 Duration

The researcher has the option of restricting the analysis to units that have a length
within a specified range (in seconds). This range needs to be specified prior to
analysis. Setting the duration range is a means of making the set of analysed units
more homogeneous. For example, if phrase-level contours are the target of analysis,
the researcher can decide to measure only the most common phrase lengths (Article
section 3 for an example). Note that the number of measures (Section 2.1.3) is
set once and is therefore identical for all contours, thus automatically time-warping
the measured contours. This provides the opportunity to compare compressed and
uncompressed versions of the same contour (see Ladd, 2008, p. 180 for a discussion).
Note that truncated contours are not accounted for by the duration settings. Setting
the duration range may therefore be mostly needed when additional control over the
unit length is desired, e.g. to exclude outlying lengths. Note that the largest degree
of control in selecting a homogeneous dataset is obtained by selecting the unit of
analysis (section 1.1). The script requires the duration range to be set in all cases.
When no duration restrictions are needed, the range still needs to be defined and
should be set using a very small number (zero is not accepted) as the minimum and
a very high number as the maximum. For example, with a duration range between
0.00001 and 1000 seconds, most - if not all - intervals are taken into account for f0
measuring.

2.2.3 Number of measures

See Section 2.1.5.

2.2.4 Time-step

See Section 2.1.3.

11



2.2.5 Pitch minimum and maximum

See Section 2.1.2.

2.2.6 Stylization resolution

The stylisation process is handled in Praat and requires a resolution: i.e. a number
indicating the minimum f0 difference between two adjacent f0 points to be taken into
account in the stylised contour. The stylisation has two objectives. First, stylisation
abstracts over f0 differences with a size below the specified resolution and is therefore
able to discard insignificant f0 movements. Second, cluster analysis is best applied
to non-missing data. In natural speech, f0 contours are frequently interrupted due to
voiceless segments. It is known however, that listeners interpolate (fill in the voiceless
gaps when perceiving the f0 contour) to some extent (Mixdorff and Niebuhr, 2013).
Thus, by means of stylisation the researcher obtains f0 measurements that span
the entire unit of analysis. The stylisation resolution is specified in semitones and
a standard setting of 2 ST is recommended for initial analysis. Lower resolution
values allow for more local variation in the f0 contours and could be needed to reveal
phenomena that require more subtle f0 movements.

Note that with smaller numbers of measures higher degrees of stylisation are al-
ready obtained in the measurements. That is, taking 5 measures per unit of analysis
could easily abstract over f0 movements that would be captured when taking 20
measures. However, with many measures, the risk increases that insignificant f0 per-
turbations fall within the stylisation resolution and become part of essential turning
points in the stylised contour. It is highly recommended to test several combina-
tions of number of measures and stylisation resolutions, to obtain the most accurate
stylisations of the original contours. This can be done by running several rounds
of measuring and cluster analyses (Section 2.3), and evaluating the accuracy of the
output each time before doing any interpretation of the results. The accuracy can
best be evaluated by comparing the clustering output to the individual contours in
the Praat editor window. When analysing spontaneous field data, it is likely that
f0 measurement errors cannot be entirely avoided, even if the number of measures
and the stylisation resolution have been set to optimal values. Therefore, erroneous
cases are likely to be revealed by the cluster analysis and option to discard them are
provided in Section 2.3.6.
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2.2.7 Kill octave jumps

This setting allows the researcher to correct octave jumps in the units of analysis.
When selected, octave jumps are removed before the stylisation process. These
jumps can be the result of inaccurate f0 calculation in Praat and can be a challenge
to fully correct for. This problem particularly applies to spontaneous speech and
recordings made in acoustically challenging environments. When octave jumps are
not handled correctly, extreme f0 movements end up in the stylised contour and will
make the cluster analysis much less accurate. For example, a single contour with
octave jumps might be different to all other contours in the data to such an extent
that the contour forms a cluster on its own. Such an error could have an undesired
effect on the outcome or at least hinders the interpretation of the results.

Although killing octave jumps is therefore recommended by default, some con-
tours might be corrected for jumps even when there are none in the data (e.g. for
instances where speakers use a wide pitch range). Furthermore, it is important to
note that octave jumps are handled by assuming a correct “baseline” f0. Any jumps
from this baseline will thus be lowered or heightened to this baseline. Deviations
from a wrongly assumed baseline could therefore be treated erroneously as octave
jumps. This could result in Praat adding or subtracting an octave to/from a large
portion of the f0 contour, which would have otherwise been measured correctly. In
order to obtain some insight into the octave jump handling, the pitch analysis calcu-
lates a change ratio by dividing the mean f0 of the contour after handling the octave
jumps from the mean f0 of the contour before handling the octave jumps. In this
way the researcher obtains a rough estimate of the overall effect of the octave jump
handling on the f0 contour (written in the output file under “Jumpkilleffect”). If the
change ratio decreases or increases the mean f0 to a large extent, it is recommended
to inspect these cases for errors in measuring and/or octave jump handling. The
option to specify the size of the allowed change is given when preparing the data for
cluster analysis (Section 2.2.2). Obtaining a high number of extreme change ratios
can also be a sign of inaccurate (advanced) pitch settings in Praat or problems with
f0 calculation due to recording quality.

2.3 R-script: cluster (re-)analysis

The optimal settings used for clustering depend largely on the unit of analysis and
the nature of the dataset. Some essential recommendations are given in this manual,
however data-specific demands require careful consideration of each (combination of)
setting(s). The main guidelines provided here help to recognize common problems
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as f0 related (Section 2.1) or cluster analysis related (this section). However, it is
crucial to note that settings used in either part of the analysis should correspond as
they depend on each other for a useful outcome.

2.3.1 Optional user interface

The R-script is provided in two versions; one without graphical user interface (no-
gui) and one with graphical user interface (gui) . The core elements are the same in
either version of the R-script. In the no-gui version, the analysis is run directly from
specific (combinations of) codeblocks in the script. Most of the settings required for
usage of the no-gui version can be set in the code block “set variables” occurring at
the beginning of that script. In this way, settings can be changed centrally and are
intuitively visualized in the environment provided by the recommended software R-
Studio (R Core Team, 2019). Note that the subsetting variables are not set centrally,
but rather in their respective code blocks (section 2.2.6). The no-gui script provides
additional comments explaining its code-block structure and reference to the relevant
sections in this manual.

The gui version is provided using the Shiny package (Chang et al., 2020) and
offers a possibility to execute the analysis without need to refer to the code. This is
recommended for users who do not intend to alter the functionality of the script or do
not master R scripting. The gui version also stores the most recently loaded datafile,
dendrogram, table and plot automatically in the working directory until the script
is stopped. The datafile is stored in two versions. A long version (‘data long.csv’)
essentially resembles the output of the Praat script which was uploaded in the gui
(and optionally cleaned or subset). In the long version, one row represents a single
f0 value. A wide version (‘data wide.csv’) is stored with the most recent cluster
analysis results written in an additional column (‘cluster’) in the dataframe. This
provides a readable outcome of the cluster analysis for checking individual contours.
In the wide version, one row represents a single contour, i.e. consisting of all f0
measurements that make up this contour (equal to the number of measures, Section
2.1.3). The gui version provides an option to save the current analysis (data long,
data wide, dendrogram, table, plot, and an evaluation table and plot) for later use
(see also Section 2.2.5 and 2.2.6). If the files are saved by the user, they will not be
cleaned upon closing the gui version, but stored in a subdirectory called “saved” in
the directory from which the script is run. The following provides guidance to using
the scipts. This guidance includes explanation of the different settings the user of
the gui version can choose among. Note that most of them have a setting option
that is selected by default. The default settings can often be used without loosing
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the core functionality. There are, however, many reasons to apply specific (other)
settings for certain research questions and/or datasets, for which the explanations in
the following provide guidance.

2.3.2 Multivariate clustering with intensity and duration

The gui version offers an option to include intensity and/or duration information
in the cluster analysis. This means that clusters are formed on the basis of both
f0 and the additional cue(s). Intensity is stored as time-series measures using the
same time-scale and the same number of measures as f0. Duration is expressed in
a single number per observation (raw duration), which is used as the input for the
distance matrix. Including additional acoustic variables could increase the accuracy
of the cluster analysis to a large extent. At the same time, clustering over multiple
acoustic variables changes the nature of the cluster analysis. That is, one is no longer
clustering f0 contours but rather ‘acoustic profiles’ of the unit of analysis.

Intensity information (short-term Root Mean Square amplitude in dB) can be
measured in the gui version, adding an additional column ‘dB’ in the long data file.
Once this column gets detected when loaded for cluster analysis, an additional choice
is provided to include intensity for clustering (or not). The intensity measures are
taken using the rmsana() function in the wrassp package (Winkelmann et al., 2023).
They are automatically speaker-standardized, regardless of which speaker-correction
method is selected for f0 measures.

Cluster analysis is performed based on a single distance matrix. With multiple
acoustic variables, the individual distance matrices are first computed, and then
scaled (0-1). This makes the distances between the acoustic variables comparable,
and avoids concatenation of the time-series. Concatenation of the two time-series
(i.e. f0 and intensity) is an alternative method used in multivariate cluster analysis.
This alternative method is however not suitable when using, e.g. dynamic time
warping, as distance measure, as all measures of all variables are analysed as a single
vector per observation. Thus, it is preferred to compute distances for each acoustic
variable separately. This will be done using ‘Euclidean distance’ for intensity and
duration by default (for f0 the distance metric can be chosen differently). The scaled
distances are summed into a single distance matrix, which is then taken as the input
for cluster analysis.

The plots offered in the gui version represent f0 using a blue line and intensity as
a green line. Mean durations per cluster are given in each panel heading in the plot,
when this cue is selected for analysis. Cluster evaluation methods are based on all
the acoustic cues that were selected for analysis.
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2.3.3 Selecting data for cluster analysis

The f0 movements obtained from following the procedure outlined in Section 2.1
need to be read in R. By default, the no-gui script assumes that the output file
with the f0 movements is stored in the same directory as that script. Reading the
dataset should be done using the correct arguments for the command ‘read.csv()’ in
R, depending on the formatting of datafile. All the available formatting arguments
needed to the read the data can be specified in the in the no-gui script. In the gui
version, four arguments can be set that could overcome the most common issues;
separator (default: comma, corresponding to the default output of the Praat-script),
stringsAsFactors (default: false), fileEncoding (default: utf-8, change to utf-16 for
more complex orthographic notations such as IPA), and SkipNul (default: false, set
to true to omit nul bytes in the datafile). Note that when using the output file as
directly generated by the Praat-script, the default values are likely to be the correct
ones.

Prior to running the cluster analysis, it is important to obtain a dataset without
missing values or other (f0) errors. Several common erroneous cases can be removed
automatically from the data. The status tab in the gui version provides an overview
of automatically generated statistics on the datafile. These include the number of
contours in the data, the number of measurements taken (should correspond to the
setting used in the Praat-script), number of speakers (equals number of different
wave files), number of rows with empty filenames or labels, number of unused levels,
number of f0 measurement errors. Whenever these statistics are inaccurate or reveal
errors, the option ‘clean data’ should be selected and applied to the data. In most
cases, this resolves the errors, as can then be checked from the updated statistics
in the status tab. If errors remain, the datafile should be corrected manually or
re-generated from the Praat-script.

The cleaning process also automatically detects spurious changes in f0. Research
has shown that the rate of change in f0 has an upper limit, which is different for
rises and falls (e.g. Xu and Sun, 2002, Table X). These limits are implemented in
the app such that all contours within which the maximum rising rate (72 ST/s) or
falling rate (96 ST/s) is exceeded, are discarded from the data.

In addition an option is provided to correct cases for which the octave jump
handling resulted in deviations from the mean f0 (Section 2.1.7) that fell beyond the
range of accepted values (default: 0.90-1.10, corresponding to a maximum allowed
decrease or increase of 10%). It is likely that additional data cleanup is needed before
the cluster-analysis can be interpreted usefully. Note that octave jump correction is
useful for measures taken in Praat and does not apply to already smoothed contours
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coming from the time-series f0 measures taken in the gui version of the app. Any
remaining cleanup of data might be needed in terms of subsetting the data. How
this remaining cleanup could be handled by the clustering technique is described in
Section 2.2.6.

Furthermore, there is an option to convert the f0 values as obtained in Hertz (the
default from the gui measurement interface or from Praat) to semitone or ERB is
provided. The semitone and ERB scale are logarithmic which approximates the per-
ception of pitch more accurately than the Hertz scale (see their respective differences
in e.g. Nolan, 2003 and Glasberg and Moore, 1990).

2.3.4 Controlling for speaker differences

Six options are provided for handling speaker differences: 1) no correction, 2) sub-
tracting the speaker’s mean f0 from each measure, 3) standardizing the f0 measures,
4) min-max normalizing the f0 measures, 5) robust re-scaling the f0 measures, 6)
octave-median re-scaling the f0 measures, or taking the first derivative (d1) of the f0
measures representing a contour. The correction methods are listed in Table 2.1.

Subtracting the mean f0 controls to some extent for speaker differences such
as gender and speaking style. After applying this correction method, the dataset
contains corrected f0 values centered around 0. Therefore, the corrected values could
be negative. Negative values indicate that the speaker produced an f0 which is
below the mean f0 of that speaker. Note that subtracting the mean f0 does not take
into account speaker differences that concern f0 range. For example, a monotonous
speaker will remain to show a flatter contour after subtracting the mean than a less
monotonous speaker. These unaccounted differences could affect the cluster analysis.
For example, consider a final rise that might be used to signal a question. This rise
is likely to be shallow for monotonous speakers and steep for speakers with a more
variable f0. As a result, the two types of speakers are likely to end up in to different
clusters. In that case, the cluster analysis will fail to correctly group a functional
difference (question signaling) due to speaker differences. Or worse, all the contours
of the monotonous speaker end up in a single cluster, because the larger f0 differences
between contours of speakers with a more variable f0 will be clustered first (due to
complete linkage, Article section 1.6). To reduce the influence of speaker differences
on the cluster analysis due to f0 range, three additional methods are provided.

Standardizing the f0 subtracts the mean f0 a speaker from each f0 measure of
that speaker and divides the outcome by the f0 standard deviation of that speaker.
After standardizing, the mean f0 centers around zero and the standard deviation
is one. The minimum and maximum f0 values still reflect the original distribution
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and outlying f0 values are therefore not accounted for. Note that if outliers are the
result of f0 measurement errors or stylization inaccuracies, they can still effectively
be handled by means of subsetting (section 2.2.6). Standardizing is a recommended
method to preserve functional f0 differences such as tone contrasts when comparing
different speakers (e.g. Rose, 1987).

Min-max normalization forces all f0 measures in a scale ranging from zero to one.
This is done by subtracting the minimum f0 of a speaker from each f0 measure of
that speaker and divides the outcome by the f0 range of that speaker (maximum-
minimum). Thus, both monotonous speakers and speakers with a more variable f0
will show comparable f0 ranges after rescaling. However, the original minimum and
maximum f0 values still affect the scaling process, which might give to much weight
to outlying f0 values.

To reduce undesired effects of the outliers, robust scaling could be applied. In this
method the median f0 of a speaker is subtracted from each f0 measure of that speaker
and divided by the interquartile range of that speaker’s f0 distribution (75th quantile
– 25th quantile). In this way, outliers remain outlying and can still be accounted for
in the subsetting procedures. The robust scaling method does not maintain a range
of values between zero and one and might therefore offer a less strict comparison
between speakers with varying f0 ranges.

Another method to scale the f0 range is based on the octave scale, taking into
account the speaker’s median f0. This makes the f0 measures more robust to out-
liers and is proposed as more representative method for speech melody compared
to reference values based on the mean and expressed in semitones (De Looze and
Hirst, 2014) . Octave-median scaling appeared particularly accurate for estimating
acoustic emphasis as a result of focus, topic change or turn-taking.

It is furthermore possible to abstract over speaker differences in f0 range and
register by taking the first derivative (d1) of the time-series f0 measures that rep-
resent a contour. The first derivative essentially preserves the information on the
steepness, direction and turning points (zero-crossings in d1) of the f0 contour. The
first derivative has been applied to f0 in previous research as an approximation of
the ‘velocity profile’ of a contour, which was hypothesized to be more effective for
the acquisition of tonal categories than the raw f0 contour (e.g. Gauthier, Shi, and
Xu, 2005).

By default, both the no-gui and gui scripts assume that each audio file (Section
2.1) corresponds to a unique speaker. If this is not the case or if all audio files
are obtained from the same speaker, it is recommended to either not apply any
corrections or to adjust the datafile and/or script such that speaker differences can
be taken into account.
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Table 2.1: Overview of speaker correction methods and their formulas. f0 = a single
f0 measure (of a particular speaker), f0.spk = all f0 measures of that particular
speaker.

Correction method Formula
Subtract mean f0–mean(f0.spk)
Standardize f0–mean(f0.spk) / sd(f0.spk)
Min-max normalize f0–min(f0.spk) / max(f0.spk)–min(f0.spk)
Robust rescale f0–median(f0.spk) / 75q(f0.spk)–25q(f0.spk)
Octave-median rescale log2(f0.spk)/median(f0.spk)
First derivative (d1) ∆f0 / ∆time

2.3.5 Distance measures

The choice for a distance (or similarity) measure determines how differences between
contours are expressed numerically. Distance measures applied to time-series f0 data
still need to be tested thoroughly. However, some theoretical considerations are given
here based on known distance measures that have mainly been applied to time-series
data in other scientific disciplines (e.g. Esling and Agon, 2012). A distinction has
been made between two aspects on the basis of which similarity can be expressed
numerically; shape and amplitude. As for f0 contours, shape mainly concerns the
direction of the f0 movement (rising, falling, level). Amplitude concerns the width
of the f0 movement and thus closely relates to the excursion size (pitch range) of
the movements. Both shape and amplitude are commonly subdivided into local and
global measures, depending on the domain for which similarity is sought.

Time-series distance measures have been categorised into four types (Esling and
Agon, 2012); shape-based, edit-based, feature-based, and structure-based. Many of
the shape-based and edit-based measures require to set additional parameters before
use. This adds an extra step (and potential error) to the comparison process and
one cannot always know its effect on the data beforehand. Although this overview
focuses mostly on parameter-free distance measures, some others that are potentially
relevant for f0 contour comparison are still discussed here.

Shape based ones compare the overall shape of the time-series’ raw values and
can further be separated into lock-step and elastic measures (Mori, Mendiburu, and
Lozano, 2016). Lock-step ones take into account the time of each measurement point
and are thus useful when no further time-warping is needed (e.g. correlation based
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distance measures). Although used widely as a lock-step measure, euclidean distance
has limitations in its application to time-series data (Esling and Agon, 2012). Elastic
measures are a more useful alternative, as they compare two time-series measures f0
contours using (dynamic) time-warping. This method is able to detect similarities
even when the contours are not perfectly time-aligned. For example, when two
contours show a rise-fall but one of them starts earlier than the other. Given that
the representation of an f0 contour by a fixed number of measurement points (Section
2.1.5) is already time-warped, a time-warping based distance measure might thus be
able to account for those differences (always requires cross-checking, see below). The
question is whether to what extend time-warping based distance measures are useful
when the length of the unit of analysis has been already carefully chosen. When two
contours have a similar shape but differ mainly in their f0 range, e.g. a shallow rise-
fall versus a steep rise-fall, some distance measures are able to detect their similarity
based on scaling (e.g. uniform scaling). The question is whether this is a useful
method in all research contexts. That is, the research question might be such that
range differences are important features of dissimilarity between contours. In that
case, scaling should be avoided.

Edit-based distance measures involve the comparison of time-series based on the
number of operations needed to convert one into the other (e.g. Levenshtein dis-
tance). The edit-operations are handled differently depending on the measure. In
particular, measures differ in how much certain edits affect the dissimilarity, and
how they deal with noise or outliers in the data. A commonly used technique among
these measures is the search for the longest common subsequence (LCSS).

Feature-based distance measures extract sets of features from the time-series on
the basis of which similarity is computed. The extraction can be based on, for
example, Discrete Wavelet Transform (DWT) or Discrete Fourier Transform (DFT).
A particularly important feature of intonation contours is autocorrelation; the high
correlation between subsequent measurement points. This feature not only forms the
basis for f0 detection measuring (e.g. Boersma and Weenink, 2022), autocorrelation
functions (ACF) can also be used to compute the difference between contours.

Structure-based measures target global similarities between time-series. This
might not necessary be a useful distance measure if the aim is finding prototypical
contours or (local) pitch accents. However, for contours that span an entire utter-
ance, global trends could be informative for distinguishing contours. Structure-based
measures are further categorized as model-based, i.e. using prior knowledge to calcu-
late the likelihood that one time-series is generated by the same model as the other,
or compression-based, i.e. the idea that concatenating and compressing two different
time-series lead to higher compression ratios if they are more similar. Compression
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Dissimilarity Measures (CDM) have been applied successfully to distinguish musical
scores (e.g. Takamoto et al., 2017).

The distance measures available in the gui version are Euclidean (L2 Norm),
mean absolute scaled error (MASE), dynamic time warping, Pearson correlation and
autocorrelation (see Table 2.2). Euclidean distance (L2 Norm) is widely used to
compute the distance between two vectors due to its low computational cost and
frequent availability. It is however, insensitive to misalignments in time as it is a
lock-step measure and does not handle outliers well (Esling and Agon, 2012). This
means that clustering outputs using Euclidean distance as a distance measure be-
come more reliable when the data is cleaned and/or converted beforehand. Dynamic
time-warping provides a way to account for misalignments between two contours that
are otherwise similar in shape. These misalignments could have been the results of
the time-warping that is done by taking a fixed number of measurement points to
represent the f0 contour. Further, root mean squared error (RMSE) has been tested
on f0 contours (Hermes, 1998) reflecting intonation perception to some extent. Note,
however, that RMSE as a distance measure (RMSD) normalizes over f0 range (re-
gardless of speaker correction methods that might have been applied to do so or
not), which limits the use of this measure to mainly f0 shape differences between
contours. Mean absolute squared error (MASE) is a time-series metric used to cal-
culate the accuracy of weather forecasts (Hyndman and Koehler, 2006). This metric
is scale-invariant and penalizes negative and positive distances in equal ways, out-
performing related metrics such as root mean squared deviation (RMSD). Although
the f0 contour comparison is different from quantifying prediction accuracy - and
currently needs further testing, the method is a potential alternative and applicable
to f0 time-series. For each distance calculation between two contours, one contour
is taken as if it were the actual weather observation and the other contour is taken
as the prediction. The output MASE value can be taken as a distance measure as
it shared the assumption that at zero, there is no distance between the contours (no
errors between observation and prediction). MASE values greater than one indicate
that a naive forecast (assuming no change) would preform better than the given fore-
cast values. It is likely that f0 contour distances expressed in MASE end up being
higher than one, indicating that one contour could not be predicted from the other
(i.e. are highly dissimilar). In this way, the MASE threshold of 1 could be used as
cut-off point to potentially improve cluster accuracy. Dynamic time warping as a
distance measure should be avoided if the length of the unit of analysis has already
been controlled for. That is, there is a trade-off to the usefulness of dynamic time-
warping if all intervals have (almost) the same length. In this case, time-warping
might analyse misaligned portions of the f0 contours as been similar although they
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are not. The importance of time-warping depends thus on the research question and
data at hand. Pearson correlation distance is an effective lock-step measure to com-
pute overall similarity between contours that are represented by time-series data. It
is important that Pearson correlation coefficients are computed in such a way that
they range from -1 to 1 (maximum negative and maximum positive correlation re-
spectively). If direction of the f0 contour is not taken into account (as by taking the
absolute correlation coefficient), the distance measures will regard simultaneously
diverging contours as being similar. The computation as implemented in the gui
version takes direction into account and is therefore suitable for application on f0
contours. Autocorrelation - being a feature-based measure - is effective to deal with
f0 contours as it takes into account that adjacent f0 points in a contour are generally
highly correlated. The autocorrelation distance is computationally costly.

Note that for the computation of correlation coefficients, time-series values are
expected to have a standard deviation that is higher than zero. This means that flat
contours will obstruct the computation of correlation coefficients. The gui version
offers an option to deal with this problem by applying a declination effect to contours
that are initially represented as being flat (declination correction . This is done
by calculating the duration of the contours (interval length) and then apply the
declination formula for speech intervals shorter than 5 seconds in Hart, Collier, and
Cohen (1990) (p.129). In this way, “flat” contours will also exhibit variation in their
f0 that is naturally expected. Note that the reasons for f0 to be initially represented
as flat may vary, but it is likely the result of f0 tracking and/or smoothing. The
number of measurement points also has an influence. These settings should be cross-
checked if many contours are represented without standard deviation.

Table 2.2: Overview of available distance measures and the respective R package
used for computation.

Distance measure R-package pros cons
Euclidean (L2 Norm) stats widely used insensitive to misalignment
root mean squared error (RMSE) Metrics tested on f0 contours range is normalized
mean absolute scaled error (MASE) Metrics outperforms RMSD not widely used for f0
dynamic time warping proxy sensitive to misalignment overcorrection
pearson correlation TSdist overall similarity contour cannot be flat
autocorrelation TSdist high potential for f0 computationally costly
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2.3.6 Linkage criteria

With hierarchical agglomerative clustering there are multiple ways in which the clus-
ters can be formed. Note that the hierarchical clustering used in the current approach
is bottom up, thus starting with each observation in a separate cluster. Clusters are
formed by merging existing clusters until there are only two clusters left. Theoret-
ically, one extra step applies in that the final two clusters are merged such that all
observations are in a single cluster. However, this final step is tantamount to no
clustering and is not informative given that clustering is meant to obtain subgroups
of observations in a dataset. Which clusters get merged is determined by the link-
age criterion . The linkage criterion specifies how distances (dissimilarities) between
clusters are computed. An overview of the linkage criteria implemented in the gui
version are listed in Table 2.3. The default one recommended here is complete link-
age, given the idea that maximal acoustic contrasts is the principle often taken to
underlie the composition of vowel inventories (e.g. Lindblom, 1986). There is no a
priori objection to select a different linkage criterion, depending on the type of f0
variation in the data.
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Table 2.3: Overview of linkage criteria

Linkage criterion Cluster dissimilarity definition
Complete Computes all pairwise dissimilarities between the ob-

servation(s) in the clusters and takes the maximal
dissimilarity. Clusters with the smallest maximal
dissimilarity get merged, leading to maximal inter-
cluster dissimilarity.

Single Computes all pairwise dissimilarities between the ob-
servation(s) in the clusters and takes the minimal dis-
similarity. Clusters with the smallest minimal dissim-
ilarity get merged, leading to minimal inter-cluster
dissimilarity.

Average (UPGMA) Computes all pairwise dissimilarities between the ob-
servation(s) in the clusters and takes the mean dis-
similarity. Clusters with the smallest mean dissimi-
larity get merged.

Ward Computes the increase in sum of squares for all pos-
sible pairwise merges of clusters. Clusters with the
smallest increase get merged. This method keeps
the total within-cluster variance minimal. Ward.D
and Ward.D2 differ in that the cluster differences are
squared in the latter and therefore emphasized, lead-
ing to easier cluster differentiation.

McQuitty (WPGMA) Similar method to average linkage, without consider-
ing the number of observations in a cluster and with
taking into account the similarity between the most
recently merged clusters.

Centroid (UPGMC)* Computes the centroids (central point of all observa-
tions, i.e. a vector of means) of the clusters. Clusters
with the centroids closest to each other get merged.

Median (WPGMC)* Similar to centroid linkage, with taking into account
the similarity between the most recently merged clus-
ters.

* These linkage criteria have the risk of leading to inversion. For most link-
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age criteria, merging happens on the basis of iteratively larger dissimilarities. With
centroid-based linkage, centroid distances could get smaller in subsequent merging
iterations. In such case, it is no longer possible to assume that with an increasing
number of clusters variance among the observations in a cluster increases, whereas
variance among the clusters decreases (see within and between cluster variance dis-
cussed in Section 2.3.10).

2.3.7 Cluster analysis / number of clusters

Hierarchical clustering provides the researcher with a dendrogram, a tree-structure
showing the outcome of each merge. The dendrogram provides a first visualisation
of the clustering process. On the basis of the dendrogram the researcher can decide
on the amount of clusters. Finding the ideal number of clusters is the essential
component in the approach outlined in the article. The dendrogram also provides
insight in the scale of the f0 differences between the clusters. Since the largest
numerical differences between clusters are found at the top of the dendrogram, an
initial analysis might reveal only the differences involving a larger f0 range. In such
an initial outcome, the dendrogram is likely to show asymmetry. This asymmetry is
the result of late adjoining of major f0 excursions (e.g. large boundary tones) with a
cluster containing all smaller scale (e.g. phrase-internal) f0 excursions. Asymmetry
can be avoided to some extent by choosing a speaker correction method that accounts
for outliers. Initial clustering outcomes thus provide insight into contour differences
of the largest scale. Smaller scale differences, such as f0 peak height, are more likely
to be successfully revealed when increasing the number of clusters. However, large
numbers of clusters might result in clusters consisting of few contours, compromising
the prototypicality of these contours. To accurately reveal small scale f0 differences,
it is recommended to analyse a more homogeneous (controlled) dataset, or a subset
of the data leaving out large-scale f0 excursions. The dendrogram provides useful
directions for the degree and type of subsetting needed, as further discussed in Section
2.2.6.

Before deciding on the number of clusters, it is recommended for the researcher
to have a theoretically motivated estimation of this number, i.e. before obtaining
any result from the analysis. For example, if the aim is to find a basic set of different
lexical tone contours from words, around four to six clusters could be sufficient
to accurately capture the contrasts. However, if the aim is to find a broad set
of all lexical tone contrasts in combination with phrase intonation patterns, e.g.
15 clusters could be the minimum number needed. One way of determining the
number of clusters is to run several rounds of analysis, each time with an increasing
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number of clusters (Article section 2, 3 and 4). This is particularly useful in an
exploratory context, where only a rough estimation of the number of clusters can
be made. It is also recommended to run the cluster analysis with a number of
clusters that exceeds the hypothesized number. In this way, the researcher can
reduce the risk of missing relevant contrast that were unexpected. The dendrogram
provides the initial guidance in finding the ideal number of clusters for a certain
analysis. Obtaining the dendrogram for a given dataset does not require any prior
decisions on the number of clusters. That is, due to the hierarchical clustering
technique used here, a dendrogram can be obtained before the number of clusters is
set. Commonly, the dendrogram shows asymmetry as the result of a cluster with a
single observation being merged with a cluster with many other observations. If the
aim is to find prototypical f0 contours, it is questionable whether single-observation-
clusters contribute to this aim (see also Section 2.2.5). They might constitute either
outliers that fail to represent the dataset or unique cases which the researcher could
consider for further individual analysis. It is not recommended to remove small
clusters from the dataset without inspection. The subsetting procedures described
in Section 2.2.6 can reduce the asymmetry in the dendrogram. An indication of
the accuracy of the number of clusters can also be derived from plotting the mean
contours per cluster, as further explained below. Apart from the general guidelines
outlined here, there are statistical methods to obtain an estimation of the ideal
number of clusters in an analysis, which are left for the user to explore (e.g. Charrad
et al., 2014).

2.3.8 Interpreting the output

Once the researcher has settled on a number of clusters for initial analysis, the output
of the cluster analysis can be used to create a number of essential data summaries
that guide the interpretation. Apart from the dendrogram, the current approach
provides three summaries; a table, a plot and an automatic annotation.

The table provides 1) the number of contours in each cluster, 2) the mean stan-
dard error per cluster, as calculated by adding up the standard errors for each mea-
surement point and divide the outcome by the number of measurement points, and
3) a tentative indication (flagging) whether a cluster should be treated with caution.
The flagging is given by a zero (no caution) or a one (caution advised) based on the
data obtained in (1) and (2). That is, caution is advised when a cluster contains only
one contour or when the mean standard error is more than two times the median of
the mean standard errors of all clusters. The logic behind the latter threshold is to
obtain a single criterion that can be applied to f0 values regardless of the speaker
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correction method or number of clusters chosen (Section 2.2.3). In particular, stan-
dard errors might be affected by some of these correction methods. By taking the
median as center value, the distance from zero (no deviation) is known. Thus, mean
standard error values that lie further away from median than zero does, are advised
to be treated with caution. The criterion is a rough estimate of how deviant the
mean contour in a particular cluster is. Individual inspection is still advised to be
able to quantify the standard errors on a known f0 scale (e.g. Hertz or semitones).
Therefore, the inspection should be done before applying speaker correction. For ex-
ample, a single cluster with a mean standard error of 10 Hz might already be enough
to overlook potentially meaningful differences between the contours. That is, the f0
range for human speech can be taken as 75 to 500 Hz (standard setting in Praat;
Boersma and Weenink, 2022). Thus, allowing for an average deviation of up to 10
Hz for the entire contour corresponds to a semitone difference that lies between 0.3
(480-500 Hz) and 2.2 (75-85 Hz). It has been shown that in Dutch, for example, 1.5
ST excursions (locally!) can be enough to perceive a linguistically meaningful promi-
nence shift (Rietveld and Gussenhoven, 1985). Although the generalizability of this
finding to other languages is open to further research, it is crucial to note that within
cluster variance of 10 Hz might not fully avoid overlooking important f0 movements
in the contour. The double-median threshold for the mean standard errors could
therefore be too crude without consideration of the f0 scale. While smaller standard
errors are generally preferred, increasing the number of assumed clusters can help to
gain insight into this type of variability and is recommended prior to any subsetting
procedures. The standard errors can thus be taken as an indication of how well the
contours fit in the cluster. As a rule of thumb: if homogeneously sized clusters with
a low mean standard error can be achieved with subsetting applied only to discard
erroneous cases, the analysis is likely to provide an optimal outcome.

The plot provides a line through the mean f0 values for each measurement in each
cluster and draws a shaded area around the line indicating the standard deviation.
In addition, the number of observations in each cluster, as also given in the distribu-
tion table, are plotted for reference. The plot can then be used to link a prototypical
contour onto an individual observation. It is recommended to check individual obser-
vations in order to inspect the small clusters, and to obtain immediate feedback on
the accuracy of the f0 measures and the chosen number of clusters. If only minimal
differences between the clusters are found, the f0 contours might have been too much
stylised and/or the number of clusters too high. If the plotted mean contours show a
large number of local f0 changes (i.e. not smooth, large standard deviations), the f0
measurements could have been too fine-grained, possibly magnifying the differences
between the clusters and failing to accurately approach the prototypical shape of a
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contour (see Section 2.1 for a discussion on the relevant settings).
It is plausible that some of the clusters in the plot show highly similar contours.

This is to be expected with a (recommended) high number of clusters for initial
analysis. It is recommended to not solely rely on the plot of mean contours to
inspect the potential similarity between two clusters. It might not be immediately
clear why two similar contours end up in separate clusters. Inspection of the actual
acoustic differences between the contours is recommended in such a case. This can
be done by reading the f0 values from the plot. These values should be compared
to more obvious differences between other clusters obtained from the same analysis.
For example, rising phrase final boundary tones could have a large f0 range and
therefore be visually easy to detect. This type of “landmark” in the contour can
provide an indication of the scale of the differences between clusters. Thus, visually
similar contours in separate clusters might also be the result of small numerical
differences which could be more accurately clustered after subsetting. Decreasing the
number of assumed clusters could also be considered as a means to obtain visually
more distinguished contours (an example of such a consideration is given in Article
section 3). However, this method makes the cluster analysis more course-grained,
introducing a higher risk of overlooking relevant contour differences.

For more thorough interpretation of the clustering analysis, two functions are pro-
vided: saving the dendrogram, data files, table and plot (gui version) and generating
textgrids. Saving the files as the output of a particular cluster analysis is useful for
future reference and further inspection and avoids redoing the cluster analysis once
the number(s) of clusters are settled on. Generating textgrids essentially indicates
for each contour to which cluster it belongs. The generated output is a textgrid file
with one tier that can be merged with the existing textgrid that contains the interval
tier from which the unit of analysis was taken for f0 measures (Section 2.1). With the
plotted mean contours as a reference, the researcher can now go through the wave
file and textgrid in Praat, and explore the potential meanings of each prototypical
intonation contour. It is crucial to note that the cluster labelling is likely to differ
when the cluster analysis is re-run with different settings (i.e. number of clusters,
cluster technique, different ways of analysing f0 etc.). It is recommended for the re-
searcher to try different settings and repeatedly go back and forth between running
the analysis and interpreting the outcome. There is no a priori indication of how
many times the analysis needs to be run for the researcher to obtain an informed
interpretation of the data, and to ultimately be able to attribute specific functions
to specific contour shapes. A typical analysis could consist of an initial run on all
data and subsequent runs on informed subsets, as a means of “zooming” into cluster
differences that would otherwise remain masked due to asymmetry (see the article;
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Section 1.6 for a theoretical motivation and Section 2 and Section 3 for examples).
However, much depends on the type of speech data or contours under analysis, and
the language at hand.

The automatic annotation allows the researcher to compare the original contour
in Praat with the mean contour representing a cluster that was generated by the
analysis. Interpreting the automatic annotations could therefore reveal f0 measure-
ment errors. It is plausible that a contour is assigned to a cluster without actually
sharing similarities with the plotted mean contour of that cluster. In this case, f0
measurement errors are the most likely cause of the mismatch. Although these errors
cannot be avoided in all cases, it is recommended to inspect them individually and
improve f0 measurement settings or change the number of clusters.

2.3.9 Subsetting

A procedure for subsetting the data is provided in the no-gui and gui version. This
procedure has two purposes. Its initial use can be applied to a high number of clusters
(Article section 3 and 4 for examples) in order to remove erroneous or outlying con-
tours. For this purpose, a high number of clusters (e.g. 25 or more) is recommended
to obtain small sized clusters. If the data consists of erroneous or outlying contours,
these will then be revealed in small sized clusters, potentially single-contour clusters.
Thus, when removing small sized clusters, the risk of discarding error-free contours
remains low. This way of “pruning” the data can be done using the automatic
flagging of erroneous/outlying contours (Section 2.2.5).

A second purpose of the subsetting is to “zoom in” into a specific subset of the
data, typically after initial round(s) of clustering. For example, initial clustering
could reveal a small number of rising contours among an overall majority of falling
contours. It could be useful to separate the rises and falls in subsets and perform
subsequent clustering on either subset. This has the advantage of revealing smaller
scale differences between the contours (e.g. different types of rises or falls), without
their differences being affected by contours of the other category. Such an application
of the subsetting procedure is particularly useful when there is clear indication or
supportive evidence from distinguishing these two types as categories.

In the non-gui version, an additional automatic subsetting procedure is provided.
This procedure is based on setting a minimum portion of the data to be left after
subsetting. Then, the smallest cluster is removed in each round of cluster analysis
until the minimum portion is reached. This subsetting procedure provides a crude
means of removing non-prototypical contours, particularly useful for large datasets
with a high degree of asymmetry in the dendrogram. Note that this procedure should
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only be run in the Rstudio environment (R Studio Team, 2020), in order to keep track
of the outcome. In particular, as the risk exists that non-erroneous contours will be
removed from the data.

A general word of caution should be given here, as subsetting essentially ig-
nores (potentially large) parts of the collected data. This procedure compromises
the representativeness of the empirical investigation and re-introduces the risk of
giving researchers’ intuitions a decisive role in the analysis-process. Although these
disadvantages cannot be entirely avoided, it is crucial to keep the ultimate goal of
the investigation in mind. The procedures outlined here are designed to reveal pro-
totypical contours, for which some deviant instances can be naturally expected in
spontaneous speech (see further discussion in the Article section 3).

2.3.10 Evaluation

The gui version provides an additional interface to evaluate the ideal number of
clusters. Two methods are implemented; one based on information cost (Shannon,
1948) and minimum description length (MDL, Rissanen, 1978), and one based on
within and between cluster variance.

The first evaluation method computes information cost of three aspects of the
cluster analysis; 1) the cost of specifying the clusters, which is expected to increase
with more clusters, 2) the probability of a contour being in a specific cluster, given
what the prototype (mean) of that cluster is, which is likely to decrease with more
clusters, and 3) the cost of specifying each contour within a certain cluster, this is
likely to increase with more clusters, depending on how well an individual contour
fits the cluster (see details and demonstration in Kaland and Ellison, 2023). The
summed outcome is then taken as a single evaluative information cost measure for one
round of cluster analysis (one ‘clustering’). When applied over a range of clusterings,
e.g. starting with two clusters up to ten clusters, the evaluation measures for each
clustering round are likely to produce a U shaped curve when the number of clusters
are plotted on the x-axis and the information cost measure on the y-axis. The
gui version provides a tab panel to perform this type of evaluation. The user is
required to specify the range of cluster rounds and a bending factor (measurement
point dependency value). The former indicates the number of clusters that should be
assumed for the first and the last round of cluster analysis that should be evaluated.
The evaluation then runs those rounds and all rounds with intermediate numbers of
clusters. The latter value indicates how dependent adjacent measurement points are,
with higher values corresponding to higher degrees of dependency. Note that this
is a way to take into account the length of the unit of analysis, which could range
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from (portions of) syllables (high dependency) to entire utterances (low dependency).
The bending factor is suggested automatically, usually within a range of 1 to 5. The
automatic suggestion is based on rough ranges of the mean duration of the unit of
analysis (in seconds, see Table 2.4). Suggested values can be manually overridden
and can be specified using values (with decimals, if needed). This might be needed
to obtain a clearer U shaped bend in the plotted curve, but should be informed by
the unit of analysis and the absolute time-gap between measurement points. When
analysing a dataset for which time-normalization has been done outside the provided
Praat- or R-scripts, the bending factor needs to be adjusted accordingly, potentially
using different values than suggested here.

The evaluation procedure generates a plot with the information cost for each
clustering round. The clustering round with the lowest information cost matches
the MDL and could be taken as the ideal number of clusters for the dataset under
analysis. Note that all evaluation is based on the specific dataset under analysis
and does therefore not directly allow generalization for the contour inventory of that
specific language.

Second, the method based on within and between cluster varaition quantifies
the variance based on the f0 values (either converted, speaker-corrected, both or
unconverted Hz values, depending on what has been chosen). It is expected that
within cluster variance of the f0 contours decreases with more clusters, because with
more clusters the individual contour within a certain cluster are more alike than with
less clusters. In addition, between cluster variance is expected to increase with more
clusters as the mean f0 contour in a certain cluster will differ more from the mean
f0 contours in other clusters (i.e. more varying mean contours with more clusters).
Note that these principles do not necessarily apply when choosing centroid-based
linkage criteria (inversion), see Section 2.3.6.

Within cluster variance is computed by taking the standard deviation of each mea-
surement point iteratively for all measurement points in a cluster. That is, starting
with cluster 1, the standard deviation is taken from all the first measurement points
in that cluster, then the standard deviation is taken from all the second measure-
ment points in that cluster (etc.), until the final measurement point in that cluster.
Then, the mean of all the standard deviations is taken to represent the variance in
that cluster, after which the same procedure is repeated for the remaining cluster(s).
Thereafter, all the mean standard deviations (one per cluster) are averaged again to
represent within cluster variance for one clustering.

Between cluster variance is computed by taking the mean f0 value of a measure-
ment point across clusters. That is, starting with measurement point 1, their mean
value in each cluster is taken iteratively for all clusters. Then, the absolute difference
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between the maximum and the minimum of these mean values is taken to represent
the between cluster variance of that particular measurement point. This procedure
is repeated for all measurement points and the single value representing the between
cluster variance of a particular clustering is the mean of all these difference measures.

In order to make the within and between cluster variance comparable, all the
values are scaled between 0 and 1. The scaling is done for each evaluation round.
For example, if an evaluation round is set to compare clusterings ranging from 2 to
10 clusters (9 clusterings), the resulting 9 values representing within cluster variance
as well the 9 values representing the between cluster variance are scaled. In this way,
the cross-over point can be plotted in a graph where both types of variance share
the same y-scale (0-1).

Theoretically, the optimum clustering is the one for which the lowest within clus-
ter variance and the highest between cluster variance is observed. The optimum
number of clusters will thus lie behind the cross-over point of both variances. De-
pending on the curvature of the variances a clear optimum might be observed, which
is reached for the number of clusters before the distance between the two variances no
longer or only minimally increases. Note that the cluster variance evaluation method
is sensitive to the range of clusterings taken into account. That is, the scaled variance
might vary to some extent depending on the range of clusterings. It is recommended
to observe the relative gain or loss in the curves representing within/between clus-
ter variance. If a ceiling or floor effect can be observed, this could be taken as an
indication that extending the maximum of the selected range is no longer needed.
Rather, if the ceiling or floor is stretched over multiple clustering rounds at the high
end of the range, the optimum lies well before the clustering round with the highest
number of clusters. It is recommended to have an informed idea about the maximum
number of clusters to test in the evaluation.

The two evaluation methods do not need to show corresponding results. It is
important to note that the approaches have different backgrounds and use therefore
different scales to express the optimal number of clusters. One method seeks the opti-
mum in terms of informativity of describing the dataset. The other method provides
insight into the clustering process and how the contour variation is distributed within
or between clusters. That is to say that they can both provide useful perspectives
on what the number of clusters to choose could be.
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Table 2.4: Mean durations of unit of analysis and suggested bending factor.

M duration unit of analysis (s) Suggested bending factor Approx. unit of analysis

>1 5 (long) utterances
0.7-1 4 phrase(s)/utterance
0.45-0.7 3 word(s)/phrase
0.15-0.45 2 syllable(s)/word
<0.15 1 syllable (portion)

33



3. References

Boersma, P. (1993). Accurate Short-Term Analysis Of The Fundamental Frequency
And The Harmonics-To-Noise Ratio Of A Sampled Sound. Proceedings of the
Institute of Phonetic Sciences, 17, 97–110.

Boersma, P., & Weenink, D. (2022). Praat: Doing Phonetics by Computer. http :
//www.praat.org/

Charrad, M., Ghazzali, N., Boiteau, V., & Niknafs, A. (2014). NbClust: An R Package
for Determining the Relevant Number of Clusters in a Data Set. Journal of
Statistical Software, 61 (6). https://doi.org/10.18637/jss.v061.i06

De Looze, C., & Hirst, D. (2014). The OMe (Octave-Median) scale: A natural scale
for speech melody. 7th International Conference on Speech Prosody 2014, 910–
914. https://doi.org/10.21437/SpeechProsody.2014-170

Esling, P., & Agon, C. (2012). Time-series data mining. ACM Computing Surveys,
45 (1), 1–34. https://doi.org/10.1145/2379776.2379788

Gauthier, B., Shi, R., & Xu, Y. (2005). Recognising Tones by Tracking Movements-
How Infants May Develop Tonal Categories from Adult Speech Input. ISCA
Workshop on Plasticity in Speech Perception (PSP 2005).

Glasberg, B. R., & Moore, B. C. (1990). Derivation of auditory filter shapes from
notched-noise data. Hearing Research, 47 (1-2), 103–138. https://doi.org/10.
1016/0378-5955(90)90170-T

Goldstein, J. L. (1973). An optimum processor theory for the central formation of
the pitch of complex tones. The Journal of the Acoustical Society of America,
54 (6), 1496–1516. https://doi.org/10.1121/1.1914448

Gordon, M., & Ladefoged, P. (2001). Phonation types: A cross-linguistic overview.
Journal of Phonetics, 29 (4), 383–406. https://doi.org/10.1006/jpho.2001.
0147

Hart, J. ’., Collier, R., & Cohen, A. (1990). A perceptual study of intonation: An
experimental-phonetic approach to speech melody [OCLC: 708567537]. Cam-
bridge University Press.

34

http://www.praat.org/
http://www.praat.org/
https://doi.org/10.18637/jss.v061.i06
https://doi.org/10.21437/SpeechProsody.2014-170
https://doi.org/10.1145/2379776.2379788
https://doi.org/10.1016/0378-5955(90)90170-T
https://doi.org/10.1016/0378-5955(90)90170-T
https://doi.org/10.1121/1.1914448
https://doi.org/10.1006/jpho.2001.0147
https://doi.org/10.1006/jpho.2001.0147


Hermes, D. J. (1998). Measuring the Perceptual Similarity of Pitch Contours. Journal
of Speech, Language, and Hearing Research, 41 (1), 73–82. https://doi.org/
10.1044/jslhr.4101.73

Himmelmann, N. P., Sandler, M., Strunk, J., & Unterladstetter, V. (2018). On
the universality of intonational phrases: A cross-linguistic interrater study.
Phonology, 35 (2), 207–245. https://doi.org/10.1017/S0952675718000039

Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast
accuracy. International Journal of Forecasting, 22 (4), 679–688. https://doi.
org/10.1016/j.ijforecast.2006.03.001

Kaland, C. (2021). Contour clustering: A field-data-driven approach for documenting
and analysing prototypical f0 contours. Journal of the International Phonetic
Association, 1–30. https://doi.org/10.1017/S0025100321000049

Kaland, C., & Ellison, T. M. (2023). Evaluating cluster analysis on f0 contours: An
information theoretic approach on three languages. In R. Skarnitzl & J. Voĺın
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4. Index

autocorrelation, 7

bending factor, 30

cluster analysis, 14

data long / data wide, 14
dendrogram, 14, 25, 26, 28, 29
duration, 15

evaluation, 30
extrapolation, 9, 10

first derivative, 17
forced declination, 22

graphical user interface (gui), 14

information cost, 30
intensity, 15
interpolation, 9, 10

kernel density estimation (KDE), 10

linkage criterion, 23

min-max normalizing, 17
minimum description length (MDL),

30
Modified Harmonic Sieve, 7, 9

monotonous, 17, 18
multivariate clustering, 15

number of clusters, 5, 25–31
number of measures, 8, 9, 11, 12, 14

octave jump, 10, 11, 13, 16
octave-median re-scaling, 17

phonation, 8

rate of change, 16
robust re-scaling, 17

sampling, 10
segmentation, 5
single-observation-clusters, 26
smoothing, 7, 9, 11
smoothing bandwidth, 10
speaker differences, 17, 18
stylization, 8, 9, 11, 18
subsetting, 14, 18, 25–30

time-normalization, 31
time-series, 7
time-warping, 11

unit of analysis, 4, 5, 7, 9, 11–13, 28,
30, 31, 33
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